Ahn, S. H., Kim, M., and Buratowski, S. (2004). Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing. Mol Cell 13, 67-76. Akoulitchev, S., Makela, T. P., Weinberg, R. A., and Reinberg, D. (1995). Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377, 557-560. Allison, L. A., Moyle, M., Shales, M., and Ingles, C. J. (1985). Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42, 599-610. Allison, L. A., Wong, J. K., Fitzpatrick, V. D., Moyle, M., and Ingles, C. J. (1988). The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol Cell Biol 8, 321-329. Alonso, A., Cujec, T. P., and Peterlin, B. M. (1994). Effects of human chromosome 12 on interactions between Tat and TAR of human immunodeficiency virus type 1. J Virol 68, 6505-6513. Andrulis, E. D., Guzman, E., Doring, P., Werner, J., and Lis, J. T. (2000). High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev 14, 2635-2649. Andrulis, E. D., Werner, J., Nazarian, A., Erdjument-Bromage, H., Tempst, P., and Lis, J. T. (2002). The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420, 837-841.

Barboric, M., Nissen, R. M., Kanazawa, S., Jabrane-Ferrat, N., and Peterlin, B. M. (2001). NF-kappaB binds P-TEFb to stimulate transcriptional elongation by RNA polymerase II. Molecular Cell 8, 327-337.

Barboric, M., and Peterlin, B. M. (2005). A new paradigm in eukaryotic biology: HIV Tat and the control of transcriptional elongation. PLoS Biol 3, e76.

Bentley, D. (1999). Coupling RNA polymerase II transcription with pre-mRNA processing. Curr Opin Cell Biol 11, 347-351. Boehm, A. K., Saunders, A., Werner, J., and Lis, J. T. (2003).

Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23, 7628-7637.

Bres, V., Kiernan, R., Emiliani, S., and Benkirane, M. (2002). Tat acetyl-acceptor lysines are important for human immunodeficiency virus type-1 replication. J Biol Chem 277, 22215-22221.

Bres, V., Tagami, H., Peloponese, J. M., Loret, E., Jeang, K. T., Nakatani, Y., Emiliani, S., Benkirane, M., and Kiernan, R. E. (2002). Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. Embo J 21, 6811-6819.

Brigati, C., Giacca, M., Noonan, D. M., and Albini, A. (2003). HIV Tat, its TARgets and the control of viral gene expression. FEMS Microbiol Lett 220, 57-65.

Casse, C., Giannoni, F., Nguyen, V. T., Dubois, M.-F., and Bensaude, O. (1999). The transcriptional inhibitors, actinomycin D and alpha-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase II C-terminal domain. Journal ofBiological Chemistry 274, 16097-16106. Chao, S.-H., and Price, D. H. (2001). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. Journal ofBiological Chemistry 276, 31793-31799. Chao, S. H., and Price, D. H. (2001). Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo. J Biol Chem 276, 31793-31799.

Chen, D., Fong, Y., and Zhou, Q. (1999). Specific interaction of Tat with the human but not rodent P-TEFb complex mediates the species-specific Tat activation of HIV-1 transcription. Proc Natl Acad Sci USA 96, 2728-2733.

Chen, R., Yang, Z., and Zhou, Q. (2004). Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J Biol Chem 279, 4153-4160.

Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J., and Buratowski, S. (2001). Opposing effects of Ctkl kinase and Fcpl phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev 75,3319-3329.

Corden, J. L., Cadena, D. L., Ahearn, J. M., Jr., and Dahmus, M. E. (1985). A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II. Proc Natl Acad Sci USA 82, 7934-7938.

Dahmus, M. E. (1995). Phosphorylation of the C-terminal domain of RNA polymerase II. Biochim Biophys Acta 1261, 171-182.

Dahmus, M. E. (1996). Phosphorylation of mammalian RNA

polymerase II. Methods Enzymol 273, 185-193.

De Falco, G., Bagella, L., Claudio, P. P., De Luca, A., Fu, Y.,

Calabretta, B., Sala, A., and Giordano, A. (2000). Physical interaction between CDK9 and B-Myb results in suppression of

B-Myb gene autoregulation. Oncogene 19, 373-379.

Dey, A., Chitsaz, F„ Abbasi, A., Misteli, T., and Ozato, K. (2003).

The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci USA 100, 8758-8763.

Eberhardy, S. R., and Farnham, P. J. (2001). C-Myc mediates activation of the cad promoter via a post-RNA polymerase II recruitment mechanism. J Biol Chem 276, 48562-48571. Estable, M. C., Naghavi, M. H„ Kato, H., Xiao, H„ Qin, J., Vahlne, A., and Roeder, R. G. (2002). MCEF, the newest member of the AF4 family of transcription factors involved in leukemia, is a positive transcription elongation factor-b-associated protein. J Biomed Sci 9, 234-245.

Fong, Y. W., and Zhou, Q. (2000). Relief of two built-in autoinhibitory mechanisms in P-TEFb is required for assembly of a multicomponent transcription elongation complex at the human immunodeficiency virus type 1 promoter. Mol Cell Biol 20, 5897-5907.

Fong, Y. W., and Zhou, Q. (2001). Stimulatory effect of splicing factors on transcriptional elongation. Nature 414, 929-933. Fujinaga, K., Irwin, D., Huang, Y., Taube, R., Kurosu, T., and Peterlin, B. M. (2004). Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 24, 787-795.

Garber, M. E., Mayall, T. P., Suess, E. M., Meisenhelder, J., Thompson, N. E„ and Jones, K. A. (2000). CDK9 autophosphorylation regulates high-affinity binding of the human immunodeficiency virus type 1 tat-P-TEFb complex to TAR RNA. Mol Cell Biol 20, 6958-6969.

Garber, M. E., Wei, P., and Jones, K. A. (1998). HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb Symp Quant Biol 63, 371-380.

Garber, M. E., Wei, P., KewalRamani, V. N., Mayall, T. P., Herrmann, C. H., Rice, A. P., Littman, D. R., and Jones, K. A. (1998). The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycTl protein. Genes Dev 12, 3512-3527. Garriga, J., Bhattacharya, S.; Calbo, J., Marshall, R. M„ Truongcao, M., Haines, D. S., and Grana, X. (2003). CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol Cell Biol 23, 5165-5173.

Garriga, J., and Grana, X. (2004). Cellular control of gene expression by T-type cyclin/CDK9 complexes. Gene 337, 15-23. Giraud, S., Hurlstone, A., Avril, S., and Coqueret, O. (2004). Implication of BRG1 and cdk9 in the STAT3-mediated activation of the p21wafl gene. Oncogene 23, 7391-7398. Gold, M. O., Yang, X., Herrmann, C. H„ and Rice, A. P. (1998). PITALRE, the catalytic subunit of TAK, is required for human immunodeficiency virus Tat transactivation in vivo. Journal of Virology 72, 4448-4453.

Grana. X., Dc Luca, A., Sang, N., Fu, Y., Claudio, P. P.,

Rosenblatt, J., Morgan, D. O., and Giordano, A. (1994). PITALRE, a nuclear CDC2-related protein kinase that phosphorylates the retinoblastoma protein in vitro. Proc Natl Acad Sci USA 91, 3834-3838.

Hart, C. E., Galphin, J. C., Westhafer, M. A., and Schochetman, G. (1993). TAR loop-dependent human immunodeficiency virus trans activation requires factors encoded on human chromosome 12. J Virol 67,5020-5024.

Hausmann, S., Schwer, B., and Shuman, S. (2004). An encephalitozoon cuniculi ortholog of the RNA polymerase II carboxyl-terminal domain (CTD) serine phosphatase Fcpl. Biochemistry 7111-7120.

Herrmann, C. H., and Rice, A. P. (1995). Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 69, 1612-1620.

Herrmann, C. H., and Rice, A. P. (1995). Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: Candidate for a Tat cofactor. Journal of Virology 69, 1612-1620.

Houzelstein, D., Bullock, S. L., Lynch, D. E., Grigorieva, E. F., Wilson, V. A., and Beddington, R. S. (2002). Growth and early postimplantation defects in mice deficient for the bromodomain-containing protein Brd4. Mol Cell Biol 22, 3794-3802.

Howe, K. J. (2002). RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim Biophys Acta 1577, 308-324.

Huang, F., Wagner, M., and Siddiqui, M. A. (2004). Ablation of the CLP-1 gene leads to down-regulation of the HAND1 gene and abnormality of the left ventricle of the heart and fetal death. Mech Dev 121, 559-572.

Ivanov, D., Kwak, Y. T., Guo, J., and Gaynor, R. B. (2000). Domains in the SPT5 protein that modulate its transcriptional regulatory properties. Mol Cell Biol 20, 2970-2983. Ivanov, D., Kwak, Y. T., Nee, E., Guo, J., Garcia-Martinez, L. F., and Gaynor, R. B. (1999). Cyclin T1 domains involved in complex formation with Tat and TAR RNA are critical for tat-activation. J Mol Biol 288, 41-56.

Jang, M., Mochizuki, K., Zhou, M., Jeong, H., Brady, J., and Ozato, K. (2005). Bromodomain protein Brd4 is a positive regulatory component of P-TEFb and stimulates RNA polymerase II dependent transcription. Mol Cell 19, 523-534. Jeanmougin, F., Wurtz, J. M., Le Douarin, B., Chambon, P., and Losson, R. (1997). The bromodomain revisited. Trends Biochem Sci 22, 151-153.

Jones, K. A. (1997). Taking a new TAK on tat transactivation. Genes Dev 11, 2593-2599.

Jones, K. A., and Peterlin, B. M. (1994). Control of RNA initiation and elongation at the HIV-1 promoter. Annu Rev

Biochem 63, 717-743.

Kanazawa, S., Okamoto, T., and Peterlin, B. M. (2000). Tat competes with CIITA for the binding to P-TEFb and blocks the expression of MHC class II genes in HIV infection. Immunity 12, 61-70.

Karn, J. (1999). Tackling Tat. J Mol Biol 293, 235-254. Kiernan, R. E., Vanhulle, C., Schiltz, L., Adam, E., Xiao, H., Maudoux, F., Calomme, C., Burny, A., Nakatani, Y., Jeang, K. T., et al. (1999). HIV-1 tat transcriptional activity is regulated by acetylation. Embo J 18, 6106-6118.

Kim, D. K., Yamaguchi, Y., Wada, T., and Handa, H. (2001). The regulation of elongation by eukaryotic RNA polymerase II: a recent view. Mol Cells 11, 267-274.

Kim, J. B., and Sharp, P. A. (2001). Positive transcription elongation factor B phosphorylates hSPT5 and RNA polymerase II carboxyl-terminal domain independently of cyclin-dependent kinase-activating kinase. J Biol Chem 276, 12317-12323. Kim, J. B., Yamaguchi, Y., Wada, T., Handa, H., and Sharp, P. A. (1999). Tat-SFl protein associates with RAP30 and human SPT5 proteins. Mol Cell Biol 19, 5960-5968.

Kino, T., Slobodskaya, O., Pavlakis, G. N., and Chrousos, G. P. (2002). Nuclear receptor coactivator pi60 proteins enhance the HIV-1 long terminal repeat promoter by bridging promoter-bound factors and the Tat-P-TEFb complex. J Biol Chem 277, 2396-2405.

Kobor, M. S., and Greenblatt, J. (2002). Regulation of transcription elongation by phosphorylation. Biochim Biophys Acta 1577, 261-275.

Komarnitsky, P., Cho, E. J., and Buratowski, S. (2000). Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14, 2452-2460.

Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C., and Hampsey, M. (2004). Ssu72 Is an RNA polymerase II CTD phosphatase. Mol Cell 14, 387-394.

Kwak, Y. T., Ivanov, D., Guo, J., Nee, E., and Gaynor, R. B. (1999). Role of the human and murine cyclin T proteins in regulating HIV-1 tat-activation. J Mol Biol 288, 57-69. Lam, L. T., Pickeral, O. K., Peng, A. C., Rosenwald, A., Hurt, E. M., Giltnane, J. M., Averett, L. M., Zhao, H., Davis, R. E., Sathyamoorthy, M„ et al. (2001). Genomic-scale measurement of mRNA turnover and the mechanisms of action of the anti-cancer drug flavopiridol. Genome Biol 2, RESEARCH0041. Leclerc, V., Tassan, J. P., O'Farrell, P. H., Nigg, E. A., and Leopold, P. (1996). Drosophila Cdk8, a kinase partner of cyclin C that interacts with the large subunit of RNA polymerase II. Mol Biol Cell 7,505-513.

Lee, D. K„ Duan, H. O., and Chang, C. (2001). Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation. Journal of Biological Chemistry 276, 9978-9984.

Li, X. Y., and Green, M. R. (1998). The HIV-1 Tat cellular coactivator Tat-SFl is a general transcription elongation factor. Genes Dev 12, 2992-2996.

Licciardo, P., Ruggiero, L., Lania, L., and Majello, B. (2001). Transcription activation by targeted recruitment of the RNA polymerase II CTD phosphatase FCP1. Nucleic Acids Res 29, 3539-3545.

Lin, P. S., Marshall, N. F., and Dahmus, M. E. (2002). CTD phosphatase: role in RNA polymerase II cycling and the regulation of transcript elongation. Prog Nucleic Acid Res Mol Biol 72, 333-365.

Lindstrom, D. L., Squazzo, S. L., Muster, N., Burckin, T. A., Wachter, K. C„ Emigh, C. A., McCleery, J. A., Yates, J. R„ 3rd, and Hartzog, G. A. (2003). Dual roles for Spt5 in pre-mRNA processing and transcription elongation revealed by identification of Spt5-associated proteins. Mol Cell Biol 23, 1368-1378. Litingtung, Y., Lawler, A. M., Sebald, S. M., Lee, E., Gearhart, J. D., Westphal, H., and Corden, J. L. (1999). Growth retardation and neonatal lethality in mice with a homozygous deletion in the C-terminal domain of RNA polymerase II. Mol Gen Genet 261, 100-105.

Mandal, S. S., Cho, H., Kim, S., Cabane, K., and Reinberg, D. (2002). FCP1, a phosphatase specific for the heptapeptide repeat of the largest subunit of RNA polymerase II, stimulates transcription elongation. Mol Cell Biol 22, 7543-7552. Mandal, S. S., Chu, C., Wada, T., Handa, H„ Shatkin, A. J., and Reinberg, D. (2004). Functional interactions of RNA-capping enzyme with factors that positively and negatively regulate promoter escape by RNA polymerase II. Proc Natl Acad Sci USA 101, 7572-7577.

Marshall, N. F., Peng, J., Xie, Z., and Price, D. H. (1996). Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. Journal of Biological Chemistry 27/, 27176-27183.

Marshall, N. F., and Price, D. H. (1995). Purification of P-TEFb, a transcription factor required for the transition into productive elongation. Journal of Biological Chemistry 270, 12335-12338. McCracken, S., Fong, N., Rosonina, E., Yankulov, K., Brothers, G., Siderovski, D., Hessel, A., Foster, S., Shuman, S., and Bentley, D. L. (1997). 5'-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev 11, 3306-3318. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M., and Bentley, D. L. (1997). The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357-361. Michels, A. A., Nguyen, V. T., Fraldi, A., Labas, V., Edwards, M., Bonnet, F., Lania, L., and Bensaude, O. (2003). MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol Cell Biol 23, 4859-4869. Murphy, S., Di Liegro, C., and Melli, M. (1987). The in vitro transcription of the 7SK RNA gene by RNA polymerase III is dependent only on the presence of an upstream promoter. Cell 51,

0 0

Post a comment