Ghazy, M. A., Brodie, S. A., Ammcrman, M. L., Ziegler, L. M., and Ponticelli, A. S. (2004). Amino acid substitutions in yeast TFIIF confer upstream shifts in transcription initiation and altered interaction with RNA polymerase II. Mol. Cell. Biol. 24, 10975-10985.

Giglia-Mari, G., Coin, F., Ranish, J. A., Hoogstraten, D., Theil, A., Wijgers, N., Jaspers, N. G. J., Raams, A., Argentini, M., van der Spek, P. J., Botta, E., Stefanini, M., Egly, J.-M., Aebersold, R., Hoeijmakers, J. H. J., and Vermeulen, W. (2004). A new, tenth subunit of TFIIH is responsible for the DNA repair syndrome trichothiodystrophy group A. Nat. Genet. 36, 714-719. Glikin, G. C., Ruberti, I., and Worcel, A. (1984). Chromatin assembly in Xenopus oocytes: in vitro studies. Cell 37, 33-41. Glossop, J. A., Dafforn, T. R., and Roberts, S. G. E. (2004). A conformational change in TFIIB is required for activator-mediated assembly of the preinitiation complex. Nucleic Acids Res. 32, 1829-1835.

Gnatt, A. L., Cramer, P., Fu, J., Bushnell, D. A., and Kornberg, R. D. (2001). Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Â resolution. Science 292, 1876-1882. Gong, D.-W., Mortin, M. A., Horikoshi, M., and Nakatani, Y. (1995). Molecular cloning of cDNA encoding the small subunit of Drosophila transcription initiation factor TFIIF. Nucleic Acids Res. 23, 1882-1886.

Goodrich, J. A., and Tjian, R. (1994). Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77, 145-156.

Grant, P. A., Schicltz, D., Pray-Grant, M. G., Steger, D. J., Reese, J. C., Yates III, J. R., and Workman, J. L. (1998). A subset of TAFnS are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94, 45-53.

Green, M. R. (2000). TBP-associatcd factors (TAF„s): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25, 59-63.

Groft, C. M., Uljon, S. N., Wang, R., and Werner, M. H. (1998). Structural homogy between the Rap30 DNA-binding domain and linker histone H5: implications for preinitiation complex assembly. Proc. Natl. Acad. Sci. USA 95, 9117-9122. Grosveld, F. (1999). Activation by locus control regions? Curr. Opin. Genet. Dev. 9, 152-157.

Guzman, E., and Lis, J. T. (1999). Transcription factor TFIIH is required for promoter melting in vivo. Mol. Cell. Biol. 19, 5652-5658.

Ha, I., Lane, W. S., and Reinberg, D. (1991). Cloning of a human gene encoding the general transcription initiation factor IIB.

Nature 352, 689-695.

Ha, I., Roberts, S., Maldonado, E., Sun, X., Kim, L. U., Green, M., and Reinberg, D. (1993). Multiple functional domains of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. Genes Dev. 7, 1021-1032.

Hahn, S., Buratowski, S., Sharp, P. A., and Guarente, L. (1989). Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58, 1173-1181.

Hahn, S. (1998). The role of TAFs in RNA polymerase II transcription. Cell 95, 579-582.

Hahn, S. (2004). Structure and mechanism of the RNA polymerase II transcription machinery. Nat. Struct. Mol. Biol. 11, 394-403.

Hai, T., Horikoshi, M., Roeder, R. G., and Green, M. R. (1988). Analysis of the role of the transcription factor ATF in the assembly of a functional preinitiation complex. Cell 54, 1043-1051.

Hampsey, M. (1998). Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62, 465-503.

Han, S„ Xie, W„ Hammes, S. R„ and DeJong, J. (2003). Expression of the germ cell-specific transcription factor ALF in Xenopus oocytes compensates for translational inactivation of the somatic factor TFIIA. J. Biol. Chem. 278, 45586-45593. Hansen, S. K„ and Tjian, R. (1995). TAFs and TFIIA mediate differential utilization of the tandem Adh promoters. Cell 82, 565-575.

Hawkes, N. A., and Roberts, S. G. E. (1999). The role of human TFIIB in transcription start site selection in vitro and in vivo. J. Biol. Chem. 274, 14337-14343.

Hawkes, N. A., Evans, R., and Roberts S. G. E. (2000). The conformation of the transcription factor TFIIB modulates the response to transcriptional activators in vivo. Curr. Biol. 10, 273-276.

Hengartner, C. J., Myer, V. E., Liao, S.-M., Wilson C. J., Koh, S. S., and Young, R. A. (1998). Temporal regulation of RNA polymerase II by SrblO and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43-53.

Henry, N. L., Campbell, A. M., Feaver, W. J., Poon, D., Weil, P. A., and Kornberg, R. D. (1994). TFIIF-TAF-RNA polymerase II connection. Genes Dev. 8, 2868-2878.

Hoey, T., Dynlacht, B. D., Peterson, M. G., Pugh, B. F., and Tjian, R. (1990). Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61, 1179-1186.

Hoey, T., Weinzierl, R. O., Gill, G., Chen, J.-L., Dynlacht, B. D., and Tjian, R. (1993). Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72, 247-260.

Hoffmann, A., Chiang, C.-M., Oelgeschlager, T., Xie, X., Burley,

S. K., Nakatani, Y., and Roeder, R. G. (1996). A histone octamer-like structure within TFIID. Nature 380, 356-359. Fteiby, T., Mitsiou, D. J., Zhou, H., Erdjument-Bromage, H., Tempst, P., and Stunnenberg, H. G. (2004). Cleavage and proteasome-mediated degradation of the basal transcription factor TFIIA. EMBO J. 23, 3083-3091.

Holstege, F. C. P., van der Vliet, P. C., and Timmers H. T. M. (1996). Opening of an RNA polymerase II promoter occurs in two distinct steps and requires the basal transcription factors HE and IIH. EMBO J. 15,1666-1677.

Holstege, F. C. P., Fiedler, U„ and Timmers, H. T. M. (1997). Three transitions in the RNA polymerase II transcription complex during initiation. EMBO J. 16, 7468-7480. Holstege, F. C. P., Jennings, E. G„ Wyrick, J. J., Lee, T. I., Hengartner, C. J., Green, M. R., Golub, T. R., Lander, E. S., and Young, R. A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728.

Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R., and Roeder, R. G. (1988). Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033-1042.

Horikoshi, M., Wang, C. K., Fujii, H., Cromlish, J. A., Weil, P. A., and Roeder, R. G. (1989a). Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature 341, 299-303.

Horikoshi, M., Wang, C. K„ Fujii, H„ Cromlish, J. A., Weil, P. A., and Roeder, R. G. (1989b). Purification of a yeast TATA box-binding protein that exhibits human transcription factor IID activity. Proc. Natl. Acad. Sci. USA 86, 4843-4847. Hou, S. Y., Wu, S.-Y., Zhou, T., Thomas, M. C., and Chiang, C.-M. (2000). Alleviation of human papillomavirus E2-mediated transcriptional repression via formation of a TATA binding protein (or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Mol. Cell. Biol. 20, 113-125.

Humbert, S., van Vuuren, H., Lutz, Y., Hoeijmakers, J. H. J., Egly, J.-M., and Moncollin, V. (1994). p44 and p34 subunits of the Btf2/TFIIH transcription factor have homologies with Ssll, a yeast protein involved in DNA repair. EMBO J. 13, 2393-2398. Imbalzano, A. N., Zaret, K. S., and Kingston, R. E. (1994). Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA. J. Biol. Chem. 269, 8280 8286.

Inostroza, J. A., Mermelstein, F. H., Ha, I., Lane, W. S., and Reinberg, D. (1992). Drl, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70, 477-489.

Jawhari, A., Lainé, J.-P., Dubaele, S., Lamour, V., Poterszman, A., Coin, F., Moras, D„ and Egly, J.-M. (2002). p52 mediates XPB function within the transcription/repair factor TFIIH. J. Biol. Chem. 277, 31761-31767.

Joliot, V., Demma, M., and Prywes, R. (1995). Interaction with RAP74 subunit of TFIIF is required for transcriptional activation by serum response factor. Nature 373, 632-635.

Jones, K. A. (1997). Taking a new TAK on tat transactivation.

Genes Dev. 11, 2593-2599.

Kamada, K., De Angelis, J., Roeder, R. G., and Burley, S. K. (2001a). Crystal structure of the C-terminal domain of the RAP74 subunit of human transcription factor IIF. Proc. Natl. Acad. Sci. USA. 98, 3115-3120.

Kamada, K., Shu, F., Chen, H., Malik, S., Stelzer, G., Roeder, R. G., Meisterernst, M., and Burley, S, K. (2001b). Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 106, 71-81.

Kang, J. J., Auble, D. T., Ranish, J. A., and Hahn, S. (1995). Analysis of yeast transcription factor TFIIA: distinct functional regions and a polymerase Il-specific role in basal and activated transcription. Mol. Cell. Biol. 15, 1234-1243. Kang, M. E., and Dahmus, M. E. (1993). RNA polymerases IIA and IIO have distinct roles during transcription from the TATA-less murine dihydrofolate reductase promoter. J. Biol. Chem. 268, 25033-25040.

Kao, C. C., Lieberman, P. M„ Schmidt, M. C., Zhou, Q„ Pei, R., and Berk, A. J. (1990). Cloning of a transcriptionally active human TATA binding factor. Science 248, 1646-1650. Kaufmann, J., Ahrens, K., Koop, R., Smale, S. T., and Muller, R. (1998). CIF150, a human cofactor for transcription factor IID-dependent initiator function. Mol. Cell. Biol. 18, 233-239. Kephart, D. D., Price, M. P., Burton, Z. F., Finkelstein, A., Greenblatt, J., and Price, D. H. (1993). Cloning of a Drosophila cDNA with sequence similarity to human transcription factor RAP74. Nucleic Acids Res. 21, 1319.

Keriel, A., Stary, A., Sarasin, A., Rochette-Egly, C., and Egly, J.-M. (2002). XPD mutations prevent TFIIH-dependent transactivation by nuclear receptors and phosphorylation of RAR . Cell 109, 125-135.

Kershnar, E„ Wu, S.-Y., and Chiang, C.-M. (1998). Immunoaffmity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J. Biol. Chem. 273, 34444-34453.

Kettenberger, H., Armache, K.-J., and Cramer, P. (2003). Architecture of the RNA polymerase II-TFIIS complex and implications for mRNA cleavage. Cell 114, 347-357. Kettenberger, H., Armache, K.-J., and Cramer, P. (2004). Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS. Mol. Cell 16, 955-965. Khazak, V., Estojak, J., Cho, H., Majors, J., Sonoda, G., Testa, J. R., and Golemis, E. A. (1998). Analysis of the interaction of the novel RNA polymerase II (pol II) subunit hsRPB4 with its partner hsRPB7 and with pol II. Mol. Cell. Biol. 18, 1935-1945. Kim, Y.-J., Bjôrklund, S., Li, Y., Sayre, M. H., and Kornberg, R. D. (1994). A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA

polymerase II. Cell 77, 599-608.

Kimura, M., Suzuki, H., and Ishihama, A. (2002). Formation of a carboxy-terminal domain phosphatase (FCP1)/TFIIF/RNA polymerase II (pol II) complex in Schizosacchammyces pombe involves direct interaction between Fcpl and the Rpb4 subunit of pol II. Mol. Cell. Biol. 22, 1577-1588.

Ko, L. J., and Prives, C. (1996). p53: puzzle and paradigm. Genes Dev. 10, 1054-1072.

Kobayashi, N., Boyer, T. G., and Berk, A. J. (1995). A class of activation domains interacts directly with TFIIA and stimulates TFlIA-TFIID-promoter complex assembly. Mol. Cell. Biol. 15, 6465-6473.

Kobor, M. S., Simon, L. D., Omichinski, J., Zhong, G., Archambault, J., and Greenblatt, J. (2000). A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcplp in Saccharomyces cerevisiae. Mol. Cell. Biol. 20, 7438-7449. Koiwa, H., Hausmann, S., Bang, W. Y., Ueda, A., Kondo, N., Hiraguri, A., Fukuhara, T., Bahk, J. D., Yun, D.-J., Bressan, R. A., Hasegawa, P. M., and Shuman, S. (2004). Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proc. Natl. Acad. Sci. USA 101, 14539-14544.

Kokubo, T., Swanson, M. J., Nishikawa, J.-I., Hinnebusch, A. G., and Nakatani, Y. (1998). The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell. Biol. 18,1003-1012.

Koleske, A. J., and Young, R. A. (1994). An RNA polymerase II holoenzyme responsive to activators. Nature 368, 466-469. Komarnitsky, P., Cho, E.-J., and Buratowski, S. (2000). Differrent phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452-2460.

Kraemer, S. M., Ranallo, R. T., Ogg, R. C., and Stargell, L.A. (2001). TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol. Cell. Biol. 21, 1737-1746.

Krishnamurthy, S., He, X., Reyes-Reyes, M., Moore, C., and Hampsey, M. (2004). Ssu72 is an RNA polymerase II CTD phosphatase. Mol. Cell 14, 387-394.

Kugel, J. F., and Goodrich, J. A. (1998). Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc. Natl. Acad. Sci. USA. 95, 9232-9237.

Kuldell, N. H., and Buratowski, S. (1997). Genetic analysis of the large subunit of yeast transcription factor HE reveals two regions with distinct functions. Mol. Cell. Biol. 17, 5288-5298. Kumar, K. P., Akoulitchev, S., and Reinberg, D. (1998). Promoter-proximal stalling results from the inability to recruit transcription factor IIH to the transcription complex and is a regulated event. Proc. Natl. Acad. Sci. USA. 95, 9767-9772. Kuras, L., Kosa, P., Mencia, M., and Struhl, K. (2000).

TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288, 1244-1248. Lagrange, T., Kim, T. K„ Orphanides, G., Ebright, Y. W„ Ebright, R. H., and Reinberg, D. (1996). High-resolution mapping of nucleoprotein complexes by site-specific protein-DNA photocrosslinking: organization of the human TBP-TFIIA-TFIIB-DNA quaternary complex. Proc. Natl. Acad. Sci. USA 93, 10620-10625.

Langelier, M.-F., Forget, D., Rojas, A., Porlier, Y., Burton, Z. F., and Coulombe, B. (2001). Structural and functional interactions of transcription factor (TF) IIA with TFIIE and TFIIF in transcription initiation by RNA polymerase II. J. Biol. Chem. 276, 38652-38657.

Lavigne, A. C., Mengus, G., Gangloff, Y.-G., Wurtz, J.-M., and Davidson, I. (1999). Human TAFn55 interacts with the vitamin D3 and thyroid hormone receptors and with derivatives of the retinoid X receptor that have altered transactivation properties. Mol. Cell. Biol. 19, 5486-5494.

Lee, D. K., De Jong, J., Hashimoto, S., Horikoshi, M., and Roeder, R. G. (1992). TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol. Cell. Biol. 12, 5189-5196.

Lee, S., and Hahn, S. (1995). Model for binding of transcription factor TFIIB to the TBP-DNA complex. Nature 376, 609-612. Lee, T. I., and Young, R. A. (2000). Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34,11-121. Lehmann, A. R. (2001). The xeroderma pigmentosum group D (XPD) gene: one gene, two functions, three diseases. Genes Dev. 15, 15-23.

Lei, L„ Ren, D„ Finkelstein, A., and Burton, Z. F. (1998). Functions of the N- and C-terminal domains of human RAP74 in transcription initiation, elongation, and recycling of RNA polymerase II. Mol. Cell. Biol. 18, 2130-2142. Lemon, B., and Tjian, R. (2000). Orchestrated response: a symphony of transcription factors for gene control. Genes Dev. 14, 2551-2569.

Leurent, C., Sanders, S., Ruhlmann, C., Mallouh, V., Weil, P. A., Kirschner, D. B., Tora, L., and Schultz, P. (2002). Mapping histone fold TAFs within yeast TFIID. EMBO J. 21, 3424-3433. Li, X.-Y., Bhaumik, S. R., and Green, M. R. (2000). Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288, 1242-1244.

Li, X.-Y., Bhaumik, S. R., Zhu, X., Li, L„ Shen, W.-C., Dixit, B. L., and Green, M. R. (2002). Selective recruitment of TAFs by yeast upstream activating sequences. Implications for eukaryotic promoter structure. Curr. Biol. 12, 1240-1244. Lieberman, P. M., and Berk, A. J. (1994). A mechanism for TAFs in transcriptional activation: activation domain enhancement of TFIID-TFIIA-promoter DNA complex formation. Genes Dev. 9, 995-1006.

Lieberman, P. M., Ozer, J., and Gursel, D. B. (1997). Requirement for transcription factor IIA (TFIIA)-TFIID

recruitment by an activator depends on promoter structure and template competition. Mol. Cell. Biol. 17, 6624-6632.

Liu, Q., Gabriel, S. E., Roinick, K. L., Ward, R. D., and Arndt, K.

M. (1999). Analysis of TFIIA function in vivo: Evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol. Cell. Biol. 19, 8673-8685.

Lu, H., Fisher, R. P., Bailey, P., and Levine, A. J. (1997). The

CDK7-cycH-p36 complex of transcription factor IIH

phosphorylates p53, enhancing its sequence-specific DNA

binding activity in vitro. Mol. Cell. Biol. 17, 5923-5934.

Ma, D., Watanabe, H., Mermelstein, F., Admon, A., Oguri, K.,

Sun, X., Wada, T., Imai, T., Shiroya, T., Reinberg, D., and Handa,

H. (1993). Isolation of a cDNA encoding the largest subunit of

TFIIA reveals functions important for activated transcription.

Genes Dev. 7, 2246-2257.

Maile, T., Kwoczynski, S., Katzenberger, R. J., Wassarman, D. A., and Sauer, F. (2004). TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304, 1010-1014.

Maldonado, E., Shiekhattar, R., Sheldon, M., Cho, H., Drapkin, R., Rickert, P., Lees, E., Anderson, C. W., Linn, S., and Reinberg, D. (1996). A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 381, 86-89. Malik, S., Hisatake, K., Sumimoto, H., Horikoshi, M., and Roeder, R. G. (1991). Sequence of general transcription factor TFIIB and relationships to other initiation factors. Proc. Natl. Acad. Sci. USA 88, 9553-9557.

Malik, S., Lee, D. K., and Roeder, R. G. (1993). Potential RNA polymerase II-induced interactions of transcription factor TFIIB. Mol. Cell. Biol. 13, 6253-6259.

Malik, S., Guermah, M., and Roeder, R. G. (1998). A dynamic model for PC4 coactivator function in RNA polymerase II transcription. Proc. Natl. Acad. Sci. USA 95, 2192-2197. Martin, M. L., Lieberman, P. M., and Curran, T. (1996). Fos-Jun dimerization promotes interaction of the basic region with TFIIE-34 and TFIIF. Mol. Cell. Biol. 16, 2110-2118. Martinez, E., Chiang, C.-M., and Roeder, R. G. (1994). TATA-binding protein-associated factor(s) in TFIID function through the initiator to direct basal transcription from a TATA-less class II promoter. EMBO J. 13, 3115-3126. Martinez, E., Ge, H., Tao, Y., Yuan, C.-X., Palhan, V., and Roeder, R. G. (1998). Novel cofactors and TFIIA mediate functional core promoter selectivity by the human TAFn150-containing TFIID complex. Mol. Cell. Biol. 18, 6571-6583. Matsui, T., Segall, J., Weil, P. A., and Roeder, R. G. (1980). Multiple factors required for accurate initiation of transcription by purified RNA polymerase II. J. Biol. Chem. 255, 11992-11996.

Matza, D., Wolstein, O., Dikstein, R., and Shachar, I. (2001). Invariant chain induces B cell maturation by activating a TAFn105-NF-KB-dependent transcription program. J. Biol. Chem. 276, 27203-27206.

Maxon, M. E., Goodrich, J. A., and Tjian, R. (1994). Transcription factor HE binds preferentially to RNA polymerase Ila and recruits TFIIH: a model for promoter clearance. Genes Dev. 8, 515-524.

McCraken, S„ and Greenblatt, J. (1991). Related RNA polymerase-binding regions in human RAP30/74 and Escherichia colio10. Science 253, 900-902. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Wickens, M., and Bentley, D. L. (1997). The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385, 357-361. McEwan, 1. J., and Gustafsson, J. (1997). Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc. Natl. Acad. Sci. USA 94, 8485-8490.

McKune, K., Moore, P. A., Hull, M. W., and Woychik, N. A. (1995). Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol. Cell. Biol. 15, 6895-6900.

Meinhart, A., Blobel, J., and Cramer, P. (2003). An extended winged helix domain in general transcription factor E/IIEa. J. Biol. Chem. 278, 48267-48274.

Meisterernst, M., Roy, A. L., Lieu, H. M., and Roeder, R. G. (1991). Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981-993. Mellon, I., and Hanawalt, P. C. (1989). Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342, 95-98. Mencia, M., Moqtaderi, Z., Geisberg, J. V., Kuras, L., and Struhl, K. (2002). Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol. Cell 9, 823-833. Merika, M., and Thanos, D. (2001). Enhanceosomes. Curr. Opin. Genet. Dev. 11, 205-208.

Merino, A., Madden, K. R., Lane, W. S., Champoux, J. J., and Reinberg, D. (1993). DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365, 227-232. Minakhin, L., Bhagat, S., Brunning, A., Campbell, E. A., Darst, S. A., Ebright, R. H., and Severinov, K. (2001). Bacterial RNA polymerase subunit co and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. USA 98, 892-897.

Mitsiou, D. J., and Stunnenberg, H. G. (2000). TAC, a TBP-sans-

TAFs complex containing the unprocessed TFIIAap precursor and the TFIIAy subunit. Mol. Cell 6, 527-537.

Mitsiou, D. J., and Stunnenberg, H. G. (2003). p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC. EMBO J. 22, 4501-4511.

Mitsuzawa, H., and Ishihama, A. (2004). RNA polymerase II

transcription apparatus in Schizosaccharomyces pombe. Curr.

Mizzen, C. A., Yang, X.-J., Kokubo, T., Brownell, J. E.,

Bannister, A. J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D. (1996). The TAF„250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261-1270. Moqtaderi, Z., Bai, Y., Poon, D., Weil, P. A., and Struhl, K. (1996). TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188-191. Naar, A. M., Lemon, B. D., and Tjian, R. (2001). Transcriptional coactivator complexes. Annu. Rev. Biochem. 70, 475-501. Nakajima, T., Uchida, C., Anderson, S. F., Parvin, J. D., and Montminy, M. (1997). Analysis of a c AMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11, 738-747. Nikolov, D. B., Chen, H., Halay, E. D., Usheva, A. A., Hisatake, K., Lee, D. K„ Roeder, R. G„ and Burley, S. K. (1995). Crystal structure of a TFIIB-TBP-TATA-element ternary complex. Nature 377, 119-128.

Oelgeschlager, T„ Tao, Y„ Kang, Y. K.: and Roeder, R. G. (1998). Transcription activation via enhanced preinitiation complex assembly in a human cell-free system lacking TAFnS. Mol. Cell 1, 925-931.

Ohkuma, Y., Sumimoto, H., Hoffmann, A., Shimasaki, S., Horikoshi, M., and Roeder, R. G. (1991). Structural motifs and potential a homologies in the large subunit of human general transcription factor TFIIE. Nature 354, 398-401. Ohkuma, Y., and Roeder, R. G. (1994). Regulation of TFIIH ATPase and kinase activities by TFIIE during active initiation complex formation. Nature 368, 160-163. Ohkuma, Y., Hashimoto, S., Wang, C. K., Horikoshi, M., and Roeder, R. G. (1995). Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-a. Mol. Cell. Biol. 15, 4856-4866.

Okamoto, T., Yamamoto, S., Watanabe, Y., Ohta, T., Hanaoka, F., Roeder, R. G., and Ohkuma, Y. (1998). Analysis of the role of TFIIE in transcriptional regulation through structure-function studies of the TFIIEp subunit. J. Biol. Chem. 273, 19866-19876. Okuda, M., Watanabe, Y., Okamura, H., Hanaoka, F., Ohkuma, Y., and Nishimura, Y. (2000). Structure of the central core domain of TFIIE(3 with a novel double-stranded DNA-binding surface. EMBO J. 19, 1346-1356.

Okuda, M., Tanaka, A., Arai, Y., Satoh, M., Okamura, H., Nagadoi, A., Hanaoka, F., Ohkuma, Y., and Nishimura, Y. (2004). A novel zinc finger structure in the large subunit of human general transcription factor TFIIE. J. Biol. Chem. 279, 51395-51403.

Orphanides, G., Lagrange, T., and Reinberg, D. (1996). The general transcription factors of RNA polymerase II. Genes Dev. 10, 2657-2683.

Ossipow, V., Tassan, J.-P., Nigg, E. A., and Schibler, U. (1995). A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation.

Cell 83, 137-146.

Ozer, J., Moore, P. A., Bolden, A. H., Lee, A., Rosen, C. A., and Lieberman, P. M. (1994). Molecular cloning of the smally subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev. 8, 2324-2335.

Ozer, J., Lezina, L. E., Ewing, J., Audi, S., and Lieberman, P. M. (1998a). Association of transcription factor IIA with TBP is required for transcriptional activation of a subset of promoters and cell cycle progression in cerevisiae. Mol. Cell. Biol. 18, 2559-2570.

Ozer, J., Mitsouras, K., Zerby, D., Carey, M., and Lieberman, P.M. (1998b). Transcription factor IIA derepresses TATA binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273, 14293-14300.

Ozer, J., Moore, P. A., and Lieberman, P. M. (2000). A testis-specific transcription factor IIA (TFIIAx) stimulates TATA-binding protein-DNA binding and transcription activation. J. Biol. Chem. 275, 122-128.

Pan, G., and Greenblatt, J. (1994). Initiation of transcription by RNA polymerase II is limited by melting of the promoter DNA in the region immediately upstream of the initiation site. J. Biol. Chem. 269, 30101-30104.

Pardee, T. S„ Bangur, C. S„ and Ponticelli, A. S. (1998). The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J. Biol. Chem. 273, 17859-17864.

Parker, C. S., and Topol, J. (1984). A Drosophila RNA polymerase II transcription factor contains a promoter-region-specific DNA-binding activity. Cell 36, 357-369. Parvin, J. D., and Sharp, P. A. (1993). DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73, 533-540.

Parvin, J. D., Shykind, B. M., Meyers, R. E., Kim, J., and Sharp, P. A. (1994). Multiple sets of basal factors initiate transcription by RNA polymerase II. J. Biol. Chem. 269, 18414-18421. Parvin, J. D., and Young, R. A. (1998). Regulatory targets in the RNA polymerase II holoenzyme. Curr. Opin. Genet. Dev. 8, 565-570.

Pei, Y., Hausmann, S., Ho, C. K., Schwer, B., and Shuman, S. (2001). The length, phosphorylation state, and primary structure of the RNA polymerase II carboxy-terminal domain dictate interactions with mRNA capping enzymes. J. Biol. Chem. 276, 28075-28082.

Peterson, M. G„ Tanese, N., Pugh, B. F., and Tjian, R. (1990). Functional domains and upstream activation properties of cloned human TATA binding protein. Science 248, 1625-1630. Peterson, M. G., Inostroza, J., Maxon, M. E., Flores, O., Admon, A., Reinberg, D., and Tjian, R. (1991). Structure and functional properties of human general transcription factor IIE. Nature 354, 369-373.

Pham, A.-D., and Sauer, F. (2000). Ubiquitin-activating/

conjugating activity of TAFn250, a mediator of activation of gene expression in Drosophila. Science 289, 2357-2360.

Pinto, I., Ware, D. E., and Hampsey, M. (1992). The yeast SUA7

gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68,

0 0

Post a comment