Kim, J.L., Nikolov, D.B., and Burley, S.K. (1993a). Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520-527.

Kim, Y., Geiger, J.H., Hahn, S., and Sigler, P.B. (1993b). Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512-520.

Kim, Y.J., Bjorklund, S., Li, Y., Sayre, M.H., and Romberg, R.D.

(1994). A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599-608.

Kim, J.L., and Burley, S.K. (1994). 1.9 Â resolution refined structure of TBP recognizing the minor groove of TATAAAAG. Nat. Struct. Biol. /, 638-653.

Kim, T.K., Zhao,Y., Ge, H., Bernstein, R., and Roeder, R.G.

(1995). TATA-binding protein residues implicated in a functional interplay between negative cofactor NC2 (Drl) and general factors TF1IA and TFIIB. J. Biol. Chem. 270, 10976-10981. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T., and Kraus, W.L. (2004). NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119, 803-814.

King, I.F., Francis, N.J., and Kingston, R.E. (2002). Native and recombinant polycomb group complexes establish a selective block to template accessibility to repress transcription in vitro. Mol. Cell. Biol. 22, 7919-7928.

Kirschner, D.B., vom Baur, E., Thibault, C., Sanders, S.L., Gangloff, Y.G., Davidson, I., Weil, P.A., and Tora, L. (2002). Distinct mutations in yeast TAFn25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns. Mol. Cell. Biol. 22, 3178-3193. Klejman, M.P., Pereira, L.A., van Zeeburg, H.J., Gilfillan, S., Meisterernst, M., Timmers, H.T. (2004). NC2a interacts with BTAF1 and stimulates its ATP-dependent association with TATA-binding protein. Mol. Cell. Biol. 24, 10072-10082. Kokubo, T., Gong, D.W., Yamashita, S., Horikoshi, M., Roeder, R.G., and Nakatani, Y. (1993). Drosophila 230-kD TFIID subunit, a functional homolog of the human cell cycle gene product, negatively regulates DNA binding of the TATA box-binding subunit of TFIID. Genes Dev. 7, 1033-1046. Kokubo, T., Swanson, M.J., Nishikawa, J.I., Hinnebusch, A.G., and Nakatani, Y. (1998). The yeast TAF 145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol. Cell. Biol. 18, 1003-1012.

Kou, H., Irvin, J.D., Huisinga, K.L., Mitra, M., and Pugh B.F. (2003). Structural and functional analysis of mutations along the crystallographic dimer interface of the yeast TATA binding protein. Mol. Cell. Biol. 23, 3186-3201.

Kraus, W.L., and Lis, J.T. (2003). PARP goes transcription. Cell 113, 677-683.

Kretzschmar, M., Kaiser, K., Lottspeich, F., and Meisterernst, M. (1994). A novel mediator of class II gene transcription with homology to viral immediate-early transcriptional regulators. Cell 78, 525-534.

Kretzschmar, M., Meisterernst, M., and Roeder, R.G. (1993). Identification of human DNA topoisomerase I as a cofactor for activator-dependent transcription by RNA polymerase II. Proc. Natl. Acad. Sci. USA 90, 11508-11512.

Kumar, B.R.P., Swaminathan, V., Banerjee, S., and Kundu, T. (2001). p300-mediated acetylation of human transcriptional coactivator PC4 is inhibited by phosphorylation. J. Biol. Chem. 276, 16804-16809.

Kuras, L„ Kosa, P., Mencia, M., and Struhl, K. (2000).

TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288, 1244-1248.

Kutach, A., and Kadonaga, J. (2000). The downstream promoter element DPE appears to be as widely used as the TATA box in

Drosophila core promoters. Mol. Cell. Biol. 20, 4754-4764.

Lee, Y.C., Park, J.M., Min, S„ Han, S.J., and Kim, Y.J. (1999).

An activator binding module of yeast RNA polymerase II

holoenzyme. Mol. Cell. Biol. 19, 2967-2976.

Lee, D., Kim, J.W., Kim, K„ Joel, C.O., Schreiber,V„

Menissier-de Murcia, J., and Choe, J. (2002). Functional interaction between human papillomavirus type 18 E2 »and poly(ADP-ribose) polymerase 1. Oncogene 2/, 5877-5885.

Li, X. Y., Virbasius, A., Zhu, X., and Green, M.R. (1999).

Enhancement of TBP binding by activators and general transcription factors. Nature 399, 605-609.

Li, X-Y., Bhaumik, S.R., and Green, M. (2000). Distinct classes of yeast promoters revealed by differential TAF recruitment.

Science 288, 1242-1244.

Lindahl, T„ Satoh, M.S., Poirier, G.G., and Klungland, A. (1995). Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem. Sci. 20, 405-411.

Liu, D., Ishima, R., Tong, K.I., Bagby, S., Kokubo, T., Muhandiram, D.R., Kay, L.E., Nakatani, Y., and Ikura, M. (1998). Solution structure of a TBP-TAFn230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94, 573-583.

Lorch, Y., Beve, J., Gustafsson, C.M., Myers, L.C., and Kornberg, R.D. (2000). Mediator-nucleosome interaction. Mol. Cell 6, 197-201.

Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260. Luo, Y., Ge, H., Stevens, S., Xiao, H., and Roeder, R.G. (1998). Coactivation by OCA-B: definition of critical regions and synergism with general cofactors. Mol. Cell. Biol. 18, 3803-3810. Maile, T., Kwoczynski, S., Katzenberger, R.J., Wassarman, D.A., and Sauer, F. (2004). TAF1 activates transcription by phosphorylation of serine 33 in histone H2B. Science 304, 1010-1014.

Malanga, M., Pleschke, J.M., Kleczkowska, H.E., and Althaus,

F.R. (1998). Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J. Biol. Chem. 273, 11839-11843.

Malanga, M., and Althaus, F.R. (2004). Poly(ADP-ribose) reactivates stalled DNA topoisomerase I and induces DNA strand break resealing. J. Biol. Chem. 279, 5244-5248. Maldonado, E. (1999). Transcriptional functions of a new mammalian TATA-binding protein-related factor. J. Biol. Chem. 274, 12963-12966.

Malik, S., Guermah, M., and Roeder, R.G. (1998). A dynamic model for PC4 coactivator function in RNA polymerase II transcription. Proc. Natl. Acad. Sci. USA 95, 2192-2197. Malik, S, Gu, W., Wu, W., Qin, J., and Roeder, R.G. (2000). The USA-derived transcriptional coactivator PC2 is a submodule of TRAP/SMCC and acts synergistically with other PCs. Mol. Cell 5, 753-760.

Martinez-Campa, C., Politis, P., Moreau, J.-L., Kent, N., Goodall, J., Mellor, J., and Goding, C.R. (2004). Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdfl. Mol. Cell 15, 69-81.

Martinez, E., Kundu, T.K., Fu, J., and Roeder, R.G. (1998). A human SPT3-TAFn31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273, 23 781-23 785. Martinez, E., Palhan, V.B., Tjernberg, A., Lymar, E.S., Gamper, A.M., Kundu, T.K., Chait, B.T., and Roeder, R.G. (2001). Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol. Cell. Biol. 21, 6782-6795. McMahon, S.B., Van Buskirk, H.A., Dugan, K.A., Copeland, T.D., and Cole, M.D. (1998). The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94, 363-14.

McMahon, S.B., Wood, M.A., and Cole, M.D. (2000). The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556-562. Meisterernst, M., and Roeder, R.G. (1991). Family of proteins that interact with TFIID and regulate promoter activity. Cell 67, 557-567.

Meisterernst, M., Roy, A.L., Lieu, H.M., Roeder, R.G. (1991). Activation of class II gene transcription by regulatory factors is potentiated by a novel activity. Cell 66, 981-993. Meisterernst, M., Stelzer, G., and Roeder, R.G. (1997). Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro. Proc. Natl. Acad. Sci. USA 94, 2261-2265. Mendoza-Alvarez, H., and Alvarez-Gonzalez, R. (2001). Regulation of p53 sequence-specific DNA-binding by covalent poly(ADP-ribosyl)ation. J. Biol. Chem. 276, 36425-36430. Merino, A., Madden, K.R., Lane, W.S., Champoux, J.J., and Reinberg, D. (1993). DNA topoisomerase I is involved in both repression and activation of transcription. Nature 365, 227-232. Metzger, D., Scheer, E., Soldatov, A., and Tora, L. (1999).

Mammalian TAFn30 is required for cell cycle progression and specific cellular differentiation programmes. EMBO J. 17, 4823-4834.

Michel, B., Komarnitsky, P., and Buratowski, S. (1998). Histone-like TAFs are essential for transcription in vivo. Mol. Cell 2, 663-673.

Mitsiou, D.J., and Stunnenberg, H.G. (2000). TAC, a TBP-sans-TAFs complex containing the unprocessed TFIIA precursor and the TFIIA subunit. Mol. Cell 6, 527-537. Mitsiou, D.J., and Stunnenberg, H.G. (2003). p300 is involved in formation of the TBP-TFIIA-containing basal transcription complex, TAC. EMBO J. 22, 4501-4511. Mittal, V., and Hernandez, N. (1997). Role for the amino-terminal region of human TBP in U6 snRNA transcription. Science 275, 1136-1140.

Miyamoto, T., Kakizawa, T., and Hashizume, K. (1999). Inhibition of nuclear receptor signalling by poly(ADP-ribose) polymerase. Mol. Cell. Biol. 19, 2644-2649. Mizzen, C.A., Yang, X.J., Kokubo, T., Brownell, J.E., Bannister, A.J., Owen-Hughes, T., Workman, J., Wang, L., Berger, S.L., Kouzarides, T., Nakatani, Y„ and Allis, C.D. (1996). The TAFn250 subunit of TFIID has histone acetyltransferase activity. Cell 87, 1261-1270.

Moore, P.A., Ozer, J., Salunek, M., Jan, G., Zerby, D., Campbell, S., and Lieberman, P.M. (1999). A human TATA binding protein-related protein with altered DNA binding specificity inhibits transcription from multiple promoters and activators. Mol. Cell. Biol. 19, 7610-7620.

Moqtaderi, Z., Bai, Y„ Poon, D., Weil, P.A, and Struhl, K. (1996). TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383, 188-191. Moqtaderi, Z., Keaveney, M., and Struhl, K. (1998). The histone H3-like TAF is broadly required for transcription in yeast. Mol. Cell 2, 675-682.

Muldrow, T.A., Campbell, A.M., Weil, P.A., and Auble, D.T. (1999). MOT1 can activate basal transcription in vitro by regulating the distribution of TATA binding protein between promoter and nonpromoter sites. Mol. Cell. Biol. 19, 2835-2845. Mulholland, N.M., King, I.F., and Kingston, R.E. (2003). Regulation of Polycomb group complexes by the sequence-specific DNA binding proteins Zeste and GAGA. Genes Dev. / 7, 2741-2746.

Myers, L.C., and Kornberg, R.D. (2000). Mediator of transcriptional regulation. Annu. Rev. Biochem. 69, 729-749. Naar, A.M., Beaurang, P.A., Zhou, S., Abraham, S., Solomon, W., and Tjian, R. (1999). Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828-832.

Narlikar, G.J., Fan, H.Y., and Kingston, R.E. (2002). Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487.

Nikolov, D.B., Hu, S.-H., Lin, J., Gasch, A., Hoffman, A.,

Horikoshi, M„ Chua, N.-H., Roeder, R.G., and Burley, S.K. (1992). Crystal structure of TFIID TATA-box binding protein. Nature 360, 40-46.

Nikolov, D.B., and Burley S.K. (1994). 2.1 A resolution refined structure of a TATA box-binding protein (TBP). Nat. Struct. Biol. 7,621-637.

Nikolov, D.B., Chen, H., Halay, E.D., Hoffman, A., Roeder, R.G., and Burley, S.K. (1996). Crystal structure of a human TATA box-binding protein/TATA element complex. Proc. Natl. Acad. Sci. USA 93, 4862-4867.

Oei, S.L., Griesenbeck, J., Schweiger, M., and Ziegler, M. (1998). Regulation of RNA polymerase II-dependent transcription by poly(ADP-ribosyl)ation of transcription factors. J. Biol. Chem. 273, 31644-31647.

Oelgeschlager, T., Chiang, C.-M., and Roeder RG. (1996). Topology and reorganization of a human TFIID-promoter complex. Nature 382, 735-738.

Oelgeschlager, T„ Tao, Y., Kang, Y.K., and Roeder, R.G. (1998). Transcription activation via enhanced preinitiation complex assembly in a human cell-free system lacking TAFaS. Mol. Cell 1, 925-931.

Ogryzko, V.V., Kotani, T., Zhang, X., Schiltz, R.L., Howard, T., Yang, X.J., Howard, B.H., Qin, J., and Nakatani, Y. (1998). Histone-like TAFs within the PCAF histone acetylase complex. Cell 94, 35-44.

Ohbayashi, T., Makino, Y., and Tamura, T. (1999). Identification of a mouse TBP-like protein (TLP) distantly related to the drosophila TBP-related factor. Nucleic Acids Res. 27, 3750-3755.

Ohbayashi, T., Shimada, M., Nakadai, T., Wada, T., Handa, H., and Tamura, T. (2003). Vertebrate TBP-like protein (TLP/TRF2/ TLF) stimulates TATA-less terminal deoxynucleotidyl transferase promoters in a transient reporter assay, and TFIIA-binding capacity of TLP is required for this function. Nucleic Acids Res. 31, 2127-2133.

Ozer, J., Mitsouras, K., Zerby, D., Carey, M., and Lieberman, P.M. (1998). Transcription factor IIA derepresscs TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J. Biol. Chem. 273, 14293-14300.

Pan, Z.Q., Gc, H., Amin, A.A., and Hurwitz, J. (1996). Transcription-positive cofactor 4 forms complexes with HSSB (RPA) on single-stranded DNA and influences HSSB-dependent enzymatic synthesis of simian virus 40 DNA. J. Biol. Chem. 271, 22111-22116.

Park, J.M., Kim, H.S., Han, S.J., Hwang, M.S., Lee, Y.C., and Kim, Y.J. (2000). In vivo requirement of activator-specific binding targets of mediator. Mol. Cell. Biol. 20, 8709-8719. Pavri, R., Lewis, B., Kim, T.K., Dilworth, F.J., Erdjument-Bromage, H., Tempst, P., de Murcia, G., Evans, R., Chambon, P., and Reinberg, D. (2005). PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of Mediator. Mol. Cell 18, 83-96.

Pereira, L.A., van der Knaap, J.A., van den Boom, V., van den Heuvel, F.A.J., and Timmers, H.T.M. (2001). TAF,,170 interacts with the concave surface of TATA-binding protein to inhibit its DNA binding activity. Mol. Cell. Biol. 21, 7523-7534. Pereira, L.A., Klejman, M.P., and Timmers, H.T. (2003). Roles for BTAF1 and Motlp in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 315, 1-13. Persengiev, S.P., Zhu, X., Dixit, B.L., Maston, G.A., Kittler, E.L., and Green, M.R. (2003). TRF3, a TATA-box-binding protein-related factor, is vertebrate-specific and widely expressed. Proc. Natl. Acad. Sci. USA 100, 14887-14891. Pham, A.D., and Sauer, F. (2000). Ubiquitin-activating/ conjugating activity of TAF,,250, a mediator of activation of gene expression in Drosophila. Science 289, 2357-2360. Pointud, J.-C., Mengus, G., Brancorsini, S., Monaco, L., Parvinen, M., Sassone-Corsi, P., and Davidson, I. (2003). The intracellular localization of TAF7L, a paralogue of transcription factor TFIID subunit TAF7, is developmentally regulated during male germ-cell differentiation. J. Cell Science 116, 1847-1858. Poon, D„ Campbell, A.M., Bai, Y., and Weil, P.A. (1994). Yeast Tafl70 is encoded by MOT1 and exists in a TATA box-binding protein (TBP)-TBP-associated factor complex distinct from transcription factor IID. J. Biol. Chem. 269, 23135-23140. Rabenstein, M.D., Zhou, S„ Lis, J.T., and Tjian, R. (1999). TATA box-binding protein (TBP)-related factor 2 (TRF2), a third member of the TBP family. Proc. Natl. Acad. Sci. USA 96, 4791-4796.

Rachez, C., Suldan, Z., Ward, J., Chang, C.P., Burakov, D., Erdjument-Bromage, H., Tempst, P., and Freedman, L.P. (1998). A novel protein complex that interacts with the vitamin D3 receptor in a ligand-dependent manner and enhances VDR transactivation in a cell-free system. Genes Dev. 12, 1787-1800. Ruppert, S., Wang, E.H., and Tjian, R. (1993). Cloning and expression of human TAF„250: a TBP-associated factor implicated in cell-cycle regulation. Nature 362, 175-179. Ruppert, S. and Tjian, R. (1995). Human TAF„250 interacts with RAP74: implications for RNA polymerase II initiation. Genes Dev. 9, 2747-2755.

Ryu, S., Zhou, S., Ladurner, A.G., and Tjian, R. (1999). The transcriptional cofactor complex CRSP is required for activity of the enhancer-binding protein Spl. Nature 397, 446-450. Saurín, A.J., Shao, Z., Erdjument-Bromage, H., Tempst, P., and Kingston, R.E. (2001). A Drosophila Polycomb group complex includes Zeste and dTAF0 proteins. Nature 412, 655-660. Selleck, W., Howley, R., Fang, Q„ Podolny, V., Fried, M.G., Buratowski, S., and Tan, S. (2001). A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat. Struct. Biol. 8, 695-700.

Sewack, G. F„ Ellis, T. W„ and Hansen, U. (2001). Binding of TATA binding protein to a naturally positioned nucleosome is facilitated by histone acetylation. Mol. Cell. Biol. 21, 1404-1415. Shao, Z„ Raible, F., Mollaaghababa, R., Guyon, J.R„ Wu, C.T.,

Bender, W., and Kingston, R.E. (1999) Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98, 37-46. Shao, H., Revach, M., Moshonov, S., Tzuman, Y., Gazit, K., Albeck, S., Unger, T., and Dikstein, R. (2005). Core promoter binding by histone-like TAF complexes. Mol. Cell. Biol. 25, 206-219.

Shykind, B.M., Kim, J., Stewart, L., Champoux, J.J., and Sharp, P.A. (1997). Topoisomerase I enhances TFIID-TFIIA complex assembly during activation of transcription. Genes Dev. 11, 397-407.

Simbulan-Rosenthal, C.M., Rosenthal, D.S., Luo, R., Samara, R., Espinoza, L.A., Hassa, P.O., Hottiger, M.O., and Smulson, M.E. (2003). PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene. 22, 8460-8471.

Slattery, E., Dignam, J.D., Matsui, T., and Roeder, R. G. (1983). Purification and analysis of a factor which suppresses nick-induced transcription by RNA polymerase II and its identity with Poly(ADP-ribose) polymerase. J. Biol. Chem. 258, 5955-5959. Solow, S„ Salunek, M., Ryan, R., and Lieberman, P.M. (2001). TAF„250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J. Biol. Chem. 276, 15886-15892. Sterner, D.E., Grant, P.A., Roberts, S.M., Duggan, L.J., Belotserkovskaya, R., Pacella, L.A., Winston, F., Workman, J.L., and Berger, S.L. (1999). Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19, 86-98.

Stewart, L., Ireton, G.C., and Champouxx, J.J. (1996). The domain organization of human topoisomerase I. J. Biol. Chem. 271, 7602-7608.

Sun, X., Zhang, Y., Cho, H., Rickert, P., Lees, E., Lane, W., and Reinberg, D. (1998). NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2, 213-222.

Sutrias-Grau, M., Bianchi, M.E., and Bernues, J. (1999). High mobility group protein 1 interacts specifically with the core domain of human TATA box-binding protein and interferes with transcription factor IIB within the preinitiation complex. J. Biol. Chem. 274, 1628-1634.

Taatjes, D.J., Naar, A.M., Andel, F., Ill, Nogales, E., and Tjian, R. (2002). Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058-1062. Taggart, A.K.P., and Pugh, B.F. (1996). Dimerization of TFIID when not bound to DNA. Science 272, 1331-1333. Teichmann, M., Wang, Z., Martinez, E., Tjernberg, A., Zhang, D., Vollmer, F„ Chait, B.T., and Roeder, R.G. (1999). Human TATA-binding protein-related factor-2 (hTRF2) stably associates with hTFIIA in HeLa cells. Proc. Natl. Acad. Sci. USA 96, 13720-13725.

Thomas, J.O. (2001). HMG1 and 2: architectural DNA-binding proteins. Biochem. Soc. Trans. 29, 395-401. Thomas, J.O., and Travers, A.A. (2001). HMG1 and 2, and related 'architectural' DNA-binding proteins. Trends Biochem. Sei. 26, 167-174.

Thomas, M.C., and Chiang, C.-M. (2005). E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol. Cell 77,251-264.

Thompson, C.M., Koleske, A.J., Chao, D.M. and Young, R.A. (1993). A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73, 1361-1375.

Timmers, H.T., Meyers, R.E., and Sharp, P.A. (1992). Composition of transcription factor B-TFIID. Proc. Natl. Acad. Sei. USA 89, 8140-8144.

Tora, L. (2002). A unified nomenclature for TATA box binding protein (TBP)-associated factors (TAFs) involved in RNA polymerase II transcription. Genes Dev. 16, 673-675. Tulin, A., and Spradling, A. (2003). Chromatin loosening by poly(ADP)-ribose polymerase at Drosophila puff loci. Science 299, 560-562.

van der Knaap, J.A., Borst, J.W., van der Vliet, P.C., Gentz, R., and Timmers, H.T.M. (1997). Cloning of the cDNA for the TATA-binding protein-associated factor:l170 subunit of transcription factor B-TFIID reveals homology to global transcription regulators in yeast and Drosophila. Proc. Natl. Acad. Sei. USA 94, 11827-11832.

Verrier, C.S., Roodi, N„ Yee, C.J., Bailey, L.R., Jensen, R.A., Bustin, M„ and Pari, F.F. (1997). High-mobility group (HMG) protein and TATA-binding protein-associated factor TAFU30 affect estrogen receptor-mediated transcriptional activation. Mol. Endocrinol. 11, 1009-1019.

Verrijzer, C. P., and Tjian, R. (1996). TAFs mediate transcriptional activation and promoter selectivity. Trends Bioch. Sei. 21, 338-342.

Walker, S.S., Reese, J.C., Apone, L.M., and Green, M.R. (1996). Transcription activation in cells lacking TAFns. Nature 383, 185-188.

Walker, A.K., Shi, Y., and Blackwell, T.K. (2004). An extensive requirement for transcription factor IID-specific TAF-1 in Caenorhabditis elegans embryonic transcription. J. Biol. Chem. 279, 15339-15347.

Wang, J.C. (1996). DNA topoisomerases. Annu. Rev. Biochem. 65, 635-692.

Wang, J.C. (2002). Cellular roles of DNA topoisomerases: a molecular perspective. Nature Rev. Mol. Cell. Biol. 3, 430-440. Wang, J.Y., Sarker, A.H., Cooper, P.K., and Volkert, M.R.. (2004).The single-strand DNA binding activity of human PC4 prevents mutagenesis and killing by oxidative DNA damage. Mol. Cell. Biol. 24, 6084-6093.

Werten, S., Stelzer, G., Goppelt, A., Langen, F.M., Gros, P.,

Timmers, H.T.M., Van der Vliet, P.C., and Meisterernst, M. (1998). Interaction of PC4 with melted DNA inhibits transcription. EMBO J. / 7, 5103-5111.

Wieczorek, E., Brand, M., Jacq, X., and Tora, L. (1998). Function of TAFn-containing complex without TBP in transcription by RNA polymerase II. Nature 393, 187-191. Willy, P.J., Kobayashi, R„ and Kadonaga, J.T. (2000). A basal transcription factor that activates or represses transcription. Science 290, 982-985.

Wolner, B.S., and Gralla, J.D. (2001). TATA-flanking sequences influence the rate and stability of TATA-binding protein and TFIIB binding. J. Biol. Chem. 276, 6260-6266. Wu, S.-Y., and Chiang, C.-M. (1998). Properties of PC4 and an RNA polymerase II complex in directing activated and basal transcription in vitro. J. Biol. Chem. 273, 12492-12498. Wu, S.-Y., Kershnar, E., and Chiang, C.-M. (1998). TAFn-independent activation mediated by human TBP in the presence of the positive cofactor PC4. EMBO J. 17, 4478-4490. Wu, S.-Y., Thomas, M.C., Hou, S.Y., Likhite, V., and Chiang, C.-M. (1999). Isolation of mouse TFIID and functional characterization of TBP and TFIID in mediating estrogen receptor and chromatin transcription. J. Biol. Chem. 274, 23480-23490.

Wu, S.-Y., and Chiang, C.-M. (2001). TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators. J. Biol. Chem. 276, 34235-34243. Wu, S.-Y., Zhou, T„ and Chiang, C.-M. (2003). Human Mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol. Cell. Biol. 23, 6229-6242.

Wu, P.-Y.J., Ruhlmann, C., Winston, F., and Schultz, P. (2004). Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell 15, 199-208.

Xie, X., Kokubo, T., Cohen, S.L., Mirza, U.A., Hoffmann, A., Chait, B.T., Roeder, R.G., Nakatani, Y„ and Burley, S.K. (1996). Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380, 316-322. Yudkovsky, N., Ranish, J.A., and Hahn, S. (2000). A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225-229.

Yuan, C.X., Ito, M., Fondell, J.D., Fu, Z.Y., and Roeder, R.G. (1998). The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl. Acad. Sci. USA 95, 7939-7944.

Zanton, S.J., and Pugh, B.F. (2004). Changes in genomewide occupancy of core transcriptional regulators during heat stress. Proc. Natl. Acad. Sci. USA 707,16843-16848. Zhao, X., and Herr, W. (2002). A regulated two-step mechanism of TBP binding to DNA: a solvent-exposed surface of TBP inhibits TATA box recognition. Cell 108, 615-627.

Zhou, Q, Lieberman, P.M., Boyer, T.G, and Berk, A.J. (1992). Holo-TFIID supports transcriptional stimulation by diverse activators and from a TATA-less promoter. Genes Dev. 6, 1964-1974.

Zhou, Q, Boyer, T.G., and Berk, A.J. (1993). Factors (TAFs) required for activated transcription interact with TATA box-binding protein conserved core domain. Genes Dev. 7, 180-187.

Zhou, T, and Chiang, C.-M. (2001). The intronless and TATA-less human TAFn55 gene contains a functional initiator and a downstream promoter element. J. Biol. Chem. 276, 25503-25511. Zhou, T, and Chiang, C.-M. (2002). Spl and AP2 regulate but do not constitute TATA-less human TAFn55 core promoter activity. Nucleic Acids Res. 30, 4145-4157.

0 0

Post a comment