Balasubramanian, R., Pray-Grant, M.G., Selleck, W., Grant, P.A., and Tan, S. (2002). Role of the Ada2 and Ada3 transcriptional coactivators in histone acetylation. J. Biol. Chem. 277, 7989-7995.

Banerjee, S., Kumar, B.R., and Kundu, T.K. (2004). General transcriptional coactivator PC4 activates p53 function. Mol. Cell. Biol. 24, 2052-2062.

Banik, U., Beechem, J.M., Klebanow, E., Schroeder, S., and Weil, PA. (2001). Fluorescence-based analyses of the effects of full-length recombinant TAF130p on the interaction of TATA box-binding protein with TATA box DNA. J. Biol. Chem. 276, 49100-49109.

Berk, A.J. (2000). TBP-like factors come into focus. Cell 103, 5-8.

Bhaumik, S.R., Raha, T., Aiello, D.P., and Green, M.R. (2004). In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev. 18, 333-343. Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A.-C., Davidson, I., and Moras, D. (1998). Human TAF„28 and TAFn 18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94, 239-249.

Borggrefe, T., Davis, R., Erdjument-Bromage, H., Tempst, P., and Kornberg, R. D. (2002). A complex of the Srb8, -9, -10, and -11 transcriptional regulatory proteins from yeast. J. Biol. Chem. 277, 44202-44207.

Boube, M., Joulia, L., Cribbs, D.L., and Bourbon, H.-M. (2002). Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 110, 143-151. Bourbon, H.M., Aguilera, A., Ansari, A.Z., Asturias, F.J., Berk, A.J., Bjorklund, S., Blackwell, T.K., Borggrefe, T„ Carey, M., Carlson, M., Conaway, J.W., Conaway, R.C., Emmons, S.W., Fondell, J.D., Freedman, L.P., Fukasawa, T., Gustafsson, C.M., Han, M., He, X., Herman, P.K., Hinnebusch, A.G., Holmberg, S.,

Holstege, F.C., Jaehning, J.A., Kim, Y.J., Kuras, L., Leutz, A., Lis, J.T., Meistereraest, M., Naar, A.M., Nasmyth, K., Parvin, J.D., Ptashne, M., Reinberg, D., Ronne, H., Sadowski, I., Sakurai, H„ Sipiczki, M„ Sternberg, P.W., Stillman, D.J, Strich, R„ Struhl, K, Svejstrap, J.Q, Tuck, S, Winston, F, Roeder, R.G, and Kornberg, R.D. (2004). A unified nomenclature for protein subunits of mediator complexes linking transcriptional regulators to RNA polymerase II. Mol. Cell 14, 553-557. Brand, M, Leurent, C, Mallouh, V, Tora, L, and Schultz, P. (1999a). Three-dimensional structures of the TAFlrcontaining complexes TFIID and TFTC. Science 286, 2151-2153. Brand, M„ Yamamoto, K, Staub, A, and Tora, L. (1999b). Identification of TATA-binding protein-free TAFlrcontaining complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274, 18285-18289. Brandsen, J, Werten, S, van der Vliet, P.C, Meisterernst, M, Kroon, J, and Gros, P. (1997). C-terminal domain of transcription cofactor PC4 reveals dimeric ssDNA binding site. Nat. Struct. Biol. 4, 900-903.

Brower, C.S, Sato, S, Tomomori-Sato, C, Kamura, T, Pause, A, Stearman, R, Klausner, R.D, Malik, S, Lane, W.S, Sorokina, I, Roeder, R.G, Conaway, J.W, Conaway, R.C. (2002). Mammalian mediator subunit mMED8 is an Elongin BC-interacting protein that can assemble with Cul2 and Rbxl to reconstitute a ubiquitin ligase. Proc. Natl. Acad. Sci. USA 99, 10353-10358.

Burke, T.W, and Kadonaga, J.T. (1997). The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAF],60 of Drosophila. Genes Dev. 11, 3020-3031.

Burley, S.K., and Roeder, R.G. (1998). TATA box mimicry by TFIID: autoinhibition ofpol II transcription. Cell 94, 551-553. Burley, S. K, and Roeder, R. G. (1996). Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65, 769-799.

Bustin, M. (2001). Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem. Sci. 26, 152-153.

Butler, A.J, and Ordahl, C.P. (1999). Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Mol. Cell. Biol. 19, 296-306.

Butler, J.E, and Kadonaga, J.T. (2001). Enhancer-promoter specificity mediated by DPE or TATA core promoter motifs. Genes Dev. 15, 2515-2519.

Calvo, O, and Manley, J.L. (2005). The transcriptional coactivator PC4/Subl has multiple functions in RNA polymerase II transcription. EMBO J. 24, 1009-1020.

Castano, E, Gross, P, Wang, Z, Roeder, R.G, and Oelgeschlager, T. (2000). The C-terminal domain-phosphorylated IIO form of RNA polymerase II is associated with the transcription repressor NC2 (Drl/DRAPl) and is required for transcription activation in human nuclear extracts. Proc. Natl. Acad. Sci. USA 97, 7184-7189.

Cavusoglu, N, Brand, M, Tora, L, and Dorsselaer, A.V. (2003). Novel subunits of the TATA binding protein free TAFn-containing transcription complex identified by matrix-assisted laser desorption/ionization-time of flight mass spectrometry following one-dimensional gel electrophoresis. Proteomics 3, 217-223.

Cervellera, M.N. and Sala, A. (2000). Poly(ADP-ribose) polymerase is a B-MYB coactivator. J. Biol. Chem. 275, 10692-10696.

Chalkley, G.E, and Verrijzer, C.P. (1999). DNA binding site selection by RNA polymerase II TAFs: a TAFu250-TAFn150 complex recognizes the initiator. EMBO J. 18, 4835-4845. Champoux, J.J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu Rev. Bioch. 70, 369-413. Chiang, C.-M, Ge, H, Wang, Z, Hoffmann, A, and Roeder, R.G. (1993). Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerases II and III. EMBO J. 12, 2749-2762.

Chiang, C.-M, and Roeder, R.G. (1995). Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267, 531-536.

Chicca, J.J, II, Auble, D.T., and Pugh, B.F. (1998). Cloning and biochemical characterization of TAF-172, a human homolog of yeast Motl. Mol. Cell. Biol. 18, 1701-1710. Chong, J. A, Moran, M.M, Teichmann, M, Kaczmarek, J.S, Roeder, R, and Clapham, D.E. (2005). TATA-binding protein (TBP)-like factor (TLF) is a functional regulator of transcription: reciprocal regulation of the neurofibromatosis type 1 and c-fos genes by TLF/TRF2 and TBP. Mol. Cell. Biol. 25, 2632 - 2643. Coleman, R.A, Taggart, A.K.P, Benjamin, L.R, and Pugh, B.F. (1995). Dimerization of the TATA binding protein. J. Biol. Chem. 270, 13842-13849.

Coleman, R.A, Taggart, A.K.P, Burma, S, Chicca, J.J, II, and Pugh, B.F. (1999). TFIIA regulates TBP and TFIID dimers. Mol. Cell 4, 451-457.

Collart, M.A. (1996). The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol. Cell. Biol. 16, 6668-6676.

Cretan, S„ Svejstrup, J.Q, and Collart, M.A. (2002). The NC2 a and P subunits play different roles in vivo. Genes Dev. 16, 3265-3276.

Crowley, T.E, Hoey, T, Liu, J.K, Jan, Y.N, Jan, L.Y, and Tjian, R. (1993). A new factor related to TATA-binding protein has highly restricted expression patterns in Drosophila. Nature 361, 557-561.

D'Amours, D, Desnoyers, S, D'Silva, I, and Poierier, G.G. (1999). Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249-268. Dantonel, J.C, Wurtz, J.M, Poch, O, Moras, D, and Tora, L. (1999). The TBP-like factor: an alternative transcription factor in metazoan? Trends Biochem. Sci. 24, 335-339.

Dantonel, J.C., Quintin, S., Lakatos, L., Labouesse, M., and Tora,

L. (2000). TBP-like factor is required for embryonic RNA

polymerase II transcription in C. elegans. Mol. Cell 6, 715-722.

Darst, R.P., Wang, D., and Auble, D.T. (2001). MOT 1-catalyzed

TBP-DNA disruption: uncoupling DNA conformational change and role of upstream DNA. EMBO J. 20, 2028-2040.

Das, D., and Scovell, W.M. (2001). The binding interaction of

HMG-1 with the TATA-binding protein/TATA complex. J. Biol.

Chem. 216, 32597-32605.

Dasgupta, A., Darst, R.P., Martin, K.J., Afshari, C.A., and Auble, D.T. (2002). Motl activates and represses transcription by direct, ATPase-dependent mechanisms. Proc. Natl. Acad. Sci. USA 99, 2666-2671.

Davis, J.A., Takagi, Y., Romberg, R.D., and Asturias, F.A. (2002). Structure of the yeast RNA polymerase II holoenzyme: Mediator conformation and polymerase interaction. Mol. Cell 10, 409-415. Denko, N., Wernke-Dollries, K., Johnson, A.B., Hammond, E., Chiang, C.-M., and Barton, M.C. (2003). Hypoxia actively represses transcription by inducing negative cofactor 2 (Drl/DrAPl) and blocking preinitiation complex assembly. J. Biol. Chem. 278, 5744-5749.

Dikstein, R., Ruppert, S., and Tjian, R. (1996). TAFn250 is a bipartite protein kinase that phosphorylates the base transcription factor RAP74. Cell 84, 781-790.

Dotson, M.R., Yuan, C.X., Roeder, R.G., Myers, L.C., Gustafsson, C.M., Jiang, Y.W., Li, Y., Romberg, R.D., and Asturias, F.J. (2000). Structural organization of yeast and mammalian mediator complexes. Proc. Natl. Acad. Sci. USA 97, 14307-14310.

Durso, R.J., Fisher, A.K., Albright-Frey, T.J., and Reese, J.C. (2001). Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol. Cell. Biol. 21, 7331-7344. Dynlacht, B.D., Hoey, T., and Tjian, R. (1991). Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell 66, 563-576. Falender, A.E., Freiman, R.N., Geles, R.G., Lo, R.C., Hwang, R., Lamb, D.J., Morris, P.L., Tjian, R., and Richards, J.S. (2005). Maintenance of spermatogenesis requires TAF4b, a gonad-specific subunit of TFIID. Genes Dev. 19, 794-803. Fischle, W., Wang, Y„ and Allis, C.D. (2003). Histone and chromatin cross-talk. Curr. Opin. Cell. Biol. 15, 172-183. Fondell, J.D., Ge, H., and Roeder, R.G. (1996). Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl. Acad. Sci. USA 93, 8329-8333. Fondell, J.D., Guermah, M., Malik, S., and Roeder, R.G. (1999). Thyroid hormone receptor-associated proteins and general positive cofactors mediate thyroid hormone receptor function in the absence of the TATA box-binding protein-associated factors of TFIID. Proc. Natl. Acad. Sci. USA 96, 1959-1964. Francis, N.J., Saurin, A.J., Shao, Z., and Ringston, R.E. (2001). Reconstitution of a functional core polycomb repressive complex.

Freiman, R.N., Albright, S.R., Zheng, S., Sha, W.C., Hammer, R.E., and Tjian, R. (2001). Requirement of tissue-selective TBP-associated factor TAFnl05 in ovarian development. Science 293, 2084-2087.

Fukuda, A., Tokonabe, S., Hamada, M., Matsumoto, M., Tsukui, T., Nogi, Y., and Hisatake, R. (2003). Alleviation of PC4-mediated transcriptional repression by the ERCC3 helicase activity of general transcription factor TFIIH. J. Biol. Chem. 278, 14827-14831.

Fukuda, A., Nakadai, T., Shimada, M., Tsukui, T., Matsumoto, M., Nogi, Y., Meisteremst, M., and Hisatake, K. (2004). Transcriptional coactivator PC4 stimulates promoter escape and facilitates transcriptional synergy by GAL4-VP16. Mol. Cell. Biol. 24, 6525-6535.

Gangloff, Y.-G., Romier, C., Thuault, S., Werten, S., and Davidson, I. (2001). The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem. Sci. 26, 250-257. Ge, H., and Roeder, R.G. (1994a). Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78, 513-523. Ge, H., and Roeder, R.G. (1994b). The high mobility group protein HMG1 can reversibly inhibit class II gene transcription by interaction with the TATA-binding protein. J. Biol. Chem. 269, 17136-17140.

Ge, H, Zhao, Y„ Chait, B.T., and Roeder, R.G. (1994). Phosphorylation negatively regulates the function of coactivator PC4. Proc. Natl. Acad. Sci. USA 91, 12691-12695. Gegonne, A., Weissman, J.D., and Singer, D.S. (2001). TAFU55 binding to TAFu250 inhibits its acetyltransferase activity. Proc. Natl. Acad. Sci. USA 98, 12432-12437.

Geisberg, J.V., Moqtaderi, Z., Ruras, L., and Struhl, R. (2002). Motl associates with transcriptionally active promoters and inhibits the association of NC2 in yeast. Mol. Cell. Biol. 22, 8122-8134.

Geisberg, J.V., and Struhl, R. (2004). Cellular stress alters the transcriptional properties of promoter-bound Motl-TBP complexes. Mol. Cell 14, 479-489.

Gobert, C., Skladanowski, A., and Larsen, A.R. (1999). The interaction between p53 and DNA topoisomerase I is regulated differently in cells with wild-type and mutant p53. Proc. Natl. Acad. Sci. USA 96, 10355-10360.

Goldman-Levi, R„ Miller, C., Bogoch, J., and Zak, N.B. (1996). Expanding the Motl subfamily: 89B helicase encodes a new Drosophila melanogaster SNF2-related protein which binds to multiple sites on polytene chromosomes. Nucleic Acids Res. 24, 3121-3128.

Goodrich, J.A., Hoey, T., Thut, C.J., Admon, A., and Tjian, R. (1993). Drosophila TAFn40 interacts with both a VP 16 activation domain and the basal transcription factor TFIIB. Cell 75, 519-530.

Goppelt, A., Stelzer, G., Lottspeich, F., and Meisteremst, M.

(1996). A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 15, 3105-3116. Grant, P.A., Schieitz, D., Pray-Grant, M.G., Steger, D.J., Reese, J.C., Yates, J.R., III, and Workman, J.L. (1998). A subset of TAFs are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94, 45-53.

Green, M.R. (2000). TBP-associated factors (TAF„s): multiple, selective transcriptional mediators in common complexes. Trends Biochem. Sci. 25, 59-63.

Gu, W., Malik, S., Ito, M., Yuan, C.X., Fondell, J.D., Zhang, X., Martinez, E., Qin, J., and Roeder, R.G. (1999). A novel human SRB/MED-containing cofactor complex SMCC, involved in transcriptional regulation. Mol. Cell 3, 97-108. Guermah, M., Ge, K„ Chiang, C.-M., and Roeder, R.G. (2003). The TBN protein, which is essential for early embryonic mouse development, is an inducible TAFn implicated in adipogenesis. Mol. Cell 72,991-1001.

Guglielmi, B., van Berkum, N.L., Klapholz, B., Bijma, T., Boube, M., Boschiero, C., Bourbon, H.M., Holstege, F.C., and Werner, M. (2004). A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res. 32, 5379-5391. Haile, D.T., and Parvin, J.D. (1999). Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J. Biol. Chem. 274, 2113-2117.

Hansen, S.K., Takada, S., Jacobson, R.H., Lis, J.T., and Tjian, R.

(1997). Transcription properties of a cell type-specific TATA-binding protein, TRF. Cell 91, 71-83.

Hardy, S., Brand, M., Mittler, G., Yanagisawa, J., Kato, S., Meisterernst, M., and Tora, L. (2002). TATA-binding protein-free TAF-containing complex (TFTC) and p300 are both required for efficient transcriptional activation. J. Biol. Chem. 277, 32875-32882.

Hassa, P.O., Buerki, C., Lombardi, C., Imhof, R., and Hottiger, M.O. (2003). Transcriptional coactivation of nuclear factor-kB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278, 45145-45153. Hernandez, N. (1993). TBP, a universal eukaryotic transcription factor? Genes Dev. 7, 1291-1308.

Hengartner, C.J., Myer, V.E., Liao, S.M., Wilson, C.J., Koh, S.S., and Young, R.A. (1998). Temporal regulation of RNA polymerase II by Srb 10 and Kin28 cyclin-dependent kinases. Mol. Cell 2, 43-53.

Hengartner, C..J., Thompson, C..M., Zhang, J., Chao, D.M., Liao, S.-M., Koleske, A.J., Okamura, S., and Young, R.A. (1995). Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9, 897-910.

Hiller, M.A., Lin, T.Y., Wood, C., and Fuller, M.T. (2001). Developmental regulation of transcription by a tissue-specific TAF homolog. Genes Dev. 15, 1021-1030. Hisatake, K., Hasegawa, S., Takada, R., Nakatani, Y., Horikoshi,

M„ and Roeder, R.G. (1993). The p250 subunit of native TATA box-binding factor TFIID is the cell-cycle regulatory protein CCG1. Nature 362, 179-181.

Hisatake, K., Ohta, T., Takada, R., Guermah, M., Horikoshi, M., Nakatani, Y., and Roeder, R.G. (1995). Evolutionary conservation of human TATA-binding-polypeptide-associated factors TAFU31 and TAFn80 and interactions of TAFu80 with other TAFs and with general transcription factors. Proc. Natl. Acad. Sci. USA 92, 8195-8199.

Hochheimer, A., and Tjian, R. (2003). Diversified transcription initiation complexes expand promoter selectivity and tissue-specific gene expression. Genes Dev. 17, 1309-1320. Hoffmann, A., Chiang, C.-M., Oelgeschlager, T., Xie, X., Burley, S.K., Nakatani, Y„ and Roeder, R.G. (1996). A histone octamer-like structure within TFIID. Nature 380, 356-359. Holloway, A.F., Occhiodoro, F., Mittler, G., Meisterernst, M., and Shannon, M.F. (2000). Functional interaction between the HIV transactivator Tat and the transcriptional coactivator PC4 in T cells. J. Biol. Chem. 275, 21668-21677.

Holstege, F.C., Jennings, E.G., Wyrick, J.J., Lee, T.I., Hengartner, C.J., Green, M.R., Golub, T.R., Lander, E.S., and Young, R.A. (1998). Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717-728.

Holmes, M.C., and Tjian, R. (2000). Promoter-selective properties of the TBP-related factor TRF1. Science 288,867-70. Horikoshi, M., Bertuccioli, C., Takada, R., Wang, J., Yamamoto, T., and Roeder, R.G. (1992). Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc. Natl. Acad. Sci. USA 89, 1060-1064.

Hou, S.Y., Wu, S.-Y., and Chiang, C.-M. (2002). Transcriptional activity among high and low risk human papillomavirus E2 proteins correlates with E2 DNA binding. J. Biol. Chem. 277, 45619-45629.

Huisinga, K.L., and Pugh, B.F. (2004). A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573-585.

Imbalzano, A.N., Kwon, H., Green, M.R., and Kingston, R.E. (1994a). Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370, 481-485. Imbalzano, A.N., Zaret, K.S., and Kingston, R.E. (1994b). Transcription factor (TF) IIB and TFIIA can independently increase the affinity of the TATA-binding protein for DNA. J. Biol. Chem. 269, 8280-8286.

Imhof, A., Yang, X.J., Ogryzko, V.V., Nakatani, Y„ Wolffe, A.P., and Ge, H. (1997). Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7, 689-692. Inostroza, J.A., Mermelstein, F.H., Ha, I., Lane, W.S., and Reinberg, D. (1992). Drl, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription. Cell 70, 477-489.

Ito, M., Yuan, C.X., Malik, S., Gu, W., Fondell, J.D., Yamamura,

S., Fu, Z.Y., Zhang, X., Qin, J., and Roeder RG. (1999). Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361-370.

Jackson-Fisher, A.J., Chitikila, C., Mitra, M., and Pugh, B.F.

(1999). A role for TBP dimerization in preventing unregulated gene expression. Mol. Cell 3, 717-727.

Jacobson, R.H., Ladurner, A.G., King, D.S., and Tjian, R. (2000). Structure and function of a human TAFn250 double bromodomain module. Science 288, 1422-1425. Ju, B.G., Solum, D., Song, E.J., Lee, K.J., Rose, D.W., Glass, C.K., and Rosenfeld, M.G. (2004). Activating the PARP-1 sensor component of the groucho/ TLE1 corepressor complex mediates a CaMKinase US-dependent neurogenic gene activation pathway. Cell 119, 815-829.

Juo, Z.S., Chiu, T.K., Leiberman, P.M., Baikalov, I., Berk, A.J., and Dickerson, R.E. (1996). How proteins recognize the TATA box. J. Mol. Biol. 261, 239-254.

Kaiser, K., Stelzer, G., and Meisterernst, M. (1995). The coactivator pi5 (PC4) initiates transcriptional activation during TFIIA-TFIID-promoter complex formation. EMBO J. 14, 3520-3527.

Kaiser, K., and Meisterernst, M. (1996). The human general co-factors. Trends Biochem. Sci. 21, 342-345.

Kaltenbach, L., Horner, M.A., Rothman, J.H., and Mango, S.E.

(2000). The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Mol. Cell 6, 705-713.

Kamada, K., Shu, F., Chen, H., Malik, S., Stelzer, G., Roeder, R.G., Meisterernst, M., and Burley, S.K. (2001). Crystal structure of negative cofactor 2 recognizing the TBP-DNA transcription complex. Cell 106, 71-81.

Kannan, P., and Tainsky, M.A. (1999). Coactivator PC4 mediates AP-2 transcriptional activity and suppresses ras-induced transformation dependent on AP-2 transcriptional interference. Mol. Cell. Biol. 19, 899-908.

Kannan, P., Yu, Y., Wankhade, S., and Tainsky, M.A. (1999). Poly ADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation. Nucleic Acids Res. 27, 866-874. Kanno, T., Kanno, Y., Siegel, R.M., Jang, M.K., Lenardo, M.J., and Ozato, K. (2004). Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Mol. Cell 13, 33-43.

Kato, K., Makino, Y., Kishimoto, T., Yamauchi, J., Kato, S., Muramatsu, M., and Tamura, T. (1994). Multimerization of the mouse TATA-binding protein (TBP) driven by its C-terminal conserved domain. Nucleic Acids Res. 22, 1179-1185. Kershnar, E„ Wu, S.-Y, and Chiang, C.-M. (1998). Immunoaffmity purification and functional characterization of human transcription factor IIH and RNA polymerase II from clonal cell lines that conditionally express epitope-tagged subunits of the multiprotein complexes. J. Biol. Chem. 273,

0 0

Post a comment