Dennler, S., Prunier, C., Ferrand, N., Gauthier, J. M., and Atfi, A. (2000). c-Jun inhibits transforming growth factor beta-mediated transcription by repressing Smad3 transcriptional activity. J. Biol.

Chem. 275, 28858-28865.

Derynck, R., Akhurst, R. J., and Balmain, A. (2001). TGF-beta signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117-129.

Derynck, R., and Zhang, Y. E. (2003). Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425, 577-584.

Dou, C., Lee, J., Liu, B., Liu, F., Massague, J., Xuan, S., and Lai, E. (2000). BF-1 interferes with transforming growth factor beta signaling by associating with Smad partners. Mol. Cell. Biol. 20, 6201-6211.

Dunn, N. R., Koonce, C. H., Anderson, D. C., Islam, A., Bikoff, E. K., and Robertson, E. J. (2005). Mice exclusively expressing the short isoform of Smad2 develop normally and are viable and fertile. Genes Dev. 19, 152-163.

Feng, X. H., and Derynck, R. (1997). A kinase subdomain of transforming growth factor-beta (TGF-beta) type I receptor determines the TGF-beta intracellular signaling specificity. EMBOf. 16, 3912-3923.

Feng, X. H„ Zhang, Y., Wu, R. Y„ and Derynck, R. (1998). The tumor suppressor Smad4/DPC4 and transcriptional adaptor

CBP/p300 are coactivators for smad3 in TGF-beta-induced transcriptional activation. Genes Dev. 12, 2153-2163.

Feng, X. H„ Lin, X., and Derynck, R. (2000). Smad2, Smad3 and

Smad4 cooperate with Spl to induce pl5(Ink4B) transcription in response to TGF-beta. EMBO J. 19, 5178-5193.

Feng, X. H„ Liang, Y. Y., Liang, M., Zhai, W„ and Lin, X.

(2002). Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor pl5(Ink4B). Mol. Cell 9, 133-143.

Frederick, J. P., and Wang, X. F. (2002). Smads "freeze" when they ski. Structure (Camb) 10, 1607-1611. Frederick, J. P., Liberati, N. T„ Waddell, D. S., Shi, Y„ and Wang, X. F. (2004). Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element. Mol. Cell. Biol. 24, 2546-2559.

Germain, S., Howell, M., Esslemont, G. M., and Hill, C. S. (2000). Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 14, 435-451. Grimsby, S., Jaensson, H., Dubrovska, A., Lomnytska, M., Hellman, U., and Souchelnytskyi, S. (2004). Proteomics-based identification of proteins interacting with Smad3: SREBP-2 forms a complex with Smad3 and inhibits its transcriptional activity. FEBS Lett. 577, 93-100.

Grinberg, A. V., and Kerppola, T. (2003). Both Max and TFE3 cooperate with Smad proteins to bind the plasminogen activator inhibitor-1 promoter, but they have opposite effects on transcriptional activity. J. Biol. Chem. 278, 11227-11236. Gripp, K. W., Wotton, D., Edwards, M. C., Roessler, E., Ades, L., Meinecke, P., Richieri-Costa, A., Zackai, E. H., Massague, J.,

Muenke, M., and Elledge, S. J. (2000). Mutations in TGIF cause holoprosencephaly and link NODAL signalling to human neural axis determination. Nat. Genet. 25, 205-208. Hanafusa, h., Ninomiya-Tsuji, J., Masuyama, N., Nishita, M., Fujisawa, J., Shibuya, H., Matsumoto, K., and Nishida, E. (1999). Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-beta-induced gene expression. J. Biol. Chem. 274, 27161-27167.

Hanai, J., Chen, L. F„ Kanno, T„ Ohtani-Fujita, N„ Kim, W. Y„ Guo, W. H., Imamura, T., Ishidou, Y., Fukuchi, M., Shi, M. J., et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J. Biol. Chem. 274, 31577-31582. Harada, J., Kokura, K., Kanei-Ishii, C., Nomura, T., Khan, M. M., Kim, Y., and Ishii, S. (2003). Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J. Biol. Chem. 278, 38998-39005. Hata, A., Lo, R. S., Wotton, D., Lagna, G., and Massague, J.

(1997). Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388, 82-87.

Hata, A., Lagna, G., Massague, J., and Hemmati-Brivanlou, A.

(1998). Smad6 inhibits BMP/Smadl signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev. 12, 186-197.

Hata, A., Seoane, J., Lagna, G., Montalvo, E., Hemmati-Brivanlou, A., and Massague, J. (2000). OAZ uses distinct DNA-and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 100, 229-240.

Hayashi, H„ Abdollah, S„ Qiu, Y., Cai, J., Xu, Y. Y„ Grinnell, B. W., Richardson, M. A., Topper, J. N., Gimbrone, M. A., Jr., Wrana, J. L., and Falb, D. (1997). The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 89, 1165-1173. Hayes, S. A., Zarnegar, M., Sharma, M., Yang, F., Peehl, D. M., ten Dijke, P., and Sun, Z. (2001). SMAD3 represses androgen receptor-mediated transcription. Cancer Res. 61, 2112-2118. He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., and Luo, K. (2003). The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. J. Biol. Chem. 278, 30540-30547.

Heldin, C. H„ Miyazono, K., and ten Dijke, P. (1997). TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 390, 465-471.

Higashi, K., Inagaki, Y., Fujimori, K., Nakao, A., Kaneko, H., and Nakatsuka, I. (2003). Interferon-gamma interferes with transforming growth factor-beta signaling through direct interaction of YB-1 with Smad3. J. Biol. Chem. 278, 43470-43479.

Hoodless, P. A., Haerry, T„ Abdollah, S., Stapleton, M., O'Connor, M. B., Attisano, L., and Wrana, J. L. (1996). MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489-500.

Hua, X., Liu, X., Ansari, D. 0., and Lodish, H. F. (1998). Synergistic cooperation of TFE3 and smad proteins in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene. Genes Dev. 12, 3084-3095. Hua, X., Miller, Z. A., Wu, G„ Shi, Y„ and Lodish, H. F. (1999). Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins. Proc. Natl. Acad. Sci. USA 96, 13130-13135. Huse, M., Muir, T. W„ Xu, L„ Chen, Y. G„ Kuriyan, J., and Massague, J. (2001). The TGF beta receptor activation process: an inhibitor- to substrate-binding switch. Mol. Cell 8, 671-682. Hyman, C. A., Bartholin, L., Newfeld, S. J., and Wotton, D. (2003). Drosophila TGIF proteins are transcriptional activators. Mol. Cell. Biol. 23, 9262-9274.

Imamura, T., Takase, M., Nishihara, A., Oeda, E., Hanai, J., Kawabata, M., and Miyazono, K. (1997). Smad6 inhibits signalling by the TGF-beta superfamily. Nature 389, 622-626. Imoto, S., Sugiyama, K., Muromoto, R., Sato, N., Yamamoto, T., and Matsuda, T. (2003). Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3. J. Biol. Chem. 278, 34253-34258. Inman, G. J., and Hill, C. S. (2002). Stoichiometry of active smad-transcription factor complexes on DNA. J. Biol. Chem. 277, 51008-51016.

Ishida, W., Hamamoto, T., Kusanagi, K., Yagi, K., Kawabata, M., Takehara, K., Sampath, T. K., Kato, M., and Miyazono, K. (2000). Smad6 is a Smad 1/5-induced smad inhibitor. Characterization of bone morphogenetic protein-responsive element in the mouse Smad6 promoter. J. Biol. Chem. 275, 6075-6079.

Itoh, S., Ericsson, J., Nishikawa, J., Heldin, C. H., and ten Dijke, P. (2000). The transcriptional co-activator P/CAF potentiates TGF-beta/Smad signaling. Nucleic Acids Res. 28, 4291-4298. Izutsu, K., Kurokawa, M., Imai, Y., Maki, K., Mitani, K., and Hirai, H. (2001). The corepressor CtBP interacts with Evi-1 to repress transforming growth factor beta signaling. Blood 97, 2815-2822.

Janknecht, R, Wells, N. J., and Hunter, T. (1998). TGF-beta-stimulated cooperation of smad proteins with the coactivators CBP/p300. Genes Dev. 12, 2114-2119. Jayaraman, L., and Massague, J. (2000). Distinct oligomeric states of SMAD proteins in the transforming growth factor-beta pathway. J. Biol. Chem. 275, 40710-40717. Johnson, K., Kirkpatrick, H., Comer, A., Hoffmann, F. M., and Laughon, A. (1999). Interaction of Smad complexes with tripartite DNA-binding sites. J. Biol. Chem. 274, 20709-20716. Jonk, L. J., Itoh, S., Heldin, C. H., ten Dijke, P., and Kruijer, W. (1998). Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-beta, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273, 21145-21152.

Kahata, K., Hayashi, M., Asaka, M., Hellman, U., Kitagawa, H., Yanagisawa, J., Kato, S., Imamura, T., and Miyazono, K. (2004). Regulation of transforming growth factor-beta and bone morphogenetic protein signalling by transcriptional coactivator GCN5. Genes Cells 9, 143-151.

Kaji, H., Canaff, L., Lebrun, J. J., Goltzman, D., and Hendy, G. N. (2001). Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type beta signaling. Proc. Natl. Acad. Sci. USA 98, 3837-3842.

Kang, H. Y„ Lin, H. K., Hu, Y. C., Yeh, S., Huang, K. E., and Chang, C. (2001). From transforming growth factor-beta signaling to androgen action: identification of Smad3 as an androgen receptor coregulator in prostate cancer cells. Proc. Natl. Acad. Sci. USA 98, 3018-3023.

Kang, H. Y., Huang, K. E„ Chang, S. Y., Ma, W. L., Lin, W. J., and Chang, C. (2002). Differential modulation of androgen receptor-mediated transactivation by Smad3 and tumor suppressor Smad4. J. Biol. Chem. 277, 43749-43756. Kang, Y., Chen, C. R., and Massague, J. (2003). A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Idl repression in epithelial cells. Mol. Cell//, 915-926.

Kardassis, D., Pardali, K., and Zannis, V. I. (2000). SMAD proteins transactivate the human ApoCIII promoter by interacting physically and functionally with hepatocyte nuclear factor 4. J. Biol. Chem. 275, 41405-41414.

Kato, Y., Habas, R., Katsuyama, Y., Naar, A. M., and He, X. (2002). A component of the ARC/Mediator complex required for TGF beta/Nodal signalling. Nature 418, 641-646. Kawabata, M., Inoue, H., Hanyu, A., Imamura, T., and Miyazono, K. (1998). Smad proteins exist as monomers in vivo and undergo homo- and hetero-oligomerization upon activation by serine/threonine kinase receptors. EMBO J. 17, 4056-4065. Kida, Y., Maeda, Y., Shiraishi, T., Suzuki, T., and Ogura, T. (2004). Chick Dachl interacts with the Smad complex and Sin3a to control AER formation and limb development along the proximodistal axis. Development 131, 4179-4187. Kim, J., Johnson, K., Chen, H. J., Carroll, S., and Laughon, A. (1997). Drosophila Mad binds to DNA and directly mediates activation of vestigial by Decapentaplegic. Nature 388, 304-308. Kim, R. H., Wang, D., Tsang, M., Martin, J., Huff, C., de Caestecker, M. P., Parks, W. T., Meng, X., Lechleider, R. J., Wang, T., and Roberts, A. B. (2000). A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. Genes Dev. 14, 1605-1616. Kim, D. W., and Lassar, A. B. (2003). Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nl<x3.2. Mol. Cell. Biol. 23, 8704-8717. Kokura, K., Kaul, S. C., Wadhwa, R., Nomura, T., Khan, M. M.,

Shinagawa, T., Yasukawa, T., Colmenares, C., and Ishii, S. (2001). The Ski protein family is required for MeCP2-mediated transcriptional repression. J. Biol. Chem. 276, 34115-34121. Kretzschmar, M., Liu, F., Hata, A., Doody, J., and Massague, J. (1997). The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 77, 984-995.

Kretzschmar, M., Doody, J., Timokhina, I., and Massague, J. (1999). A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev. 13, 804-816. Kurisaki, K., Kurisaki, A., Valcourt, U., Terentiev, A. A., Pardali, K., Ten Dijke, P., Heldin, C. H., Ericsson, J., and Moustakas, A. (2003). Nuclear factor YY1 inhibits transforming growth factor beta- and bone morphogenetic protein-induced cell differentiation. Mol. Cell. Biol. 23, 4494-4510. Kurokawa, M., Mitani, K., Imai, Y., Ogawa, S., Yazaki, Y., and Hirai, H. (1998a). The t(3;21) fusion product, AMLl/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 92, 4003-4012.

Kurokawa, M., Mitani, K., Irie, K., Matsuyama, T., Takahashi, T., Chiba, S., Yazaki, Y., Matsumoto, K., and Hirai, H. (1998b). The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 394, 92-96.

Kusanagi, K., Inoue, H., Ishidou, Y., Mishima, H. K., Kawabata, M„ and Miyazono, K. (2000). Characterization of a bone morphogenetic protein-responsive Smad-binding element. Mol. Biol. Cell 11, 555-565.

Labbe, E., Silvestri, C., Hoodless, P. A., Wrana, J. L., and Attisano, L. (1998). Smad2 and Smad3 positively and negatively regulate TGF beta-dependent transcription through the forkhead DNA-binding protein FAST2. Mol. Cell 2, 109-120. Labbe, E., Letamendia, A., and Attisano, L. (2000). Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proc. Natl. Acad. Sci. USA 97, 8358-8363.

Lagna, G., Hata, A., Hemmati-Brivanlou, A., and Massague, J. (1996). Partnership between DPC4 and SMAD proteins in TGF-beta signalling pathways. Nature 383, 832-836. Lai, C. F., Feng, X., Nishimura, R., Teitelbaum, S. L., Avioli, L. V., Ross, F. P., and Cheng, S. L. (2000). Transforming growth factor-beta up-regulates the beta 5 integrin subunit expression via Spl and Smad signaling. J. Biol. Chem. 275, 36400-36406. Lee, P. S., Chang, C„ Liu, D., and Derynck, R. (2003). Sumoylation of Smad4, the common Smad mediator of transforming growth factor-beta family signaling. J. Biol. Chem. 278, 27853-27863.

Leong, G. M., Subramaniam, N., Figueroa, J., Flanagan, J. L., Hayman, M. J., Eisman, J. A., and Kouzmenko, A. P. (2001). Ski-interacting protein interacts with Smad proteins to augment transforming growth factor-beta-dependent transcription. J. Biol.

Chem. 276, 18243-18248.

Liberati, N. T., Datto, M. B., Frederick, J. P., Shen, X., Wong, C., Rougier-Chapman, E. M., and Wang, X. F. (1999). Smads bind directly to the Jun family of AP-1 transcription factors. Proc. Natl. Acad. Sci. USA 96, 4844-4849.

Liberati, N. T., Moniwa, M., Borton, A. J., Davie, J. R., and Wang, X. F. (2001). An essential role for Mad homology domain 1 in the association of Smad3 with histone deacetylase activity. J. Biol. Chem. 276, 22595-22603.

Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C., and Feng, X. H. (2003a). SUMO-l/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4. J. Biol. Chem. 278, 31043-31048.

Lin, X., Liang, M., Liang, Y. Y., Brunicardi, F. C., Melchior, F., and Feng, X. H. (2003b). Activation of transforming growth factor-beta signaling by SUMO-1 modification of tumor suppressor Smad4/DPC4. J. Biol. Chem. 278, 18714-18719. Lin, H. K., Bergmann, S., and Pandolfi, P. P. (2004). Cytoplasmic PML function in TGF-beta signalling. Nature 431, 205-211.

Liu, F., Hata, A., Baker, J. C., Doody, J., Carcamo, J., Harland, R. M., and Massague, J. (1996). A human Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620-623. Liu, F., Pouponnot, C., and Massague, J. (1997). Dual role of the Smad4/DPC4 tumor suppressor in TGFbeta-inducible transcriptional complexes. Genes Dev. 11, 3157-3167. Liu, F., Massague, J., and Ruiz i Altaba, A. (1998). Carboxy-terminally truncated Gli3 proteins associate with Smads. Nat. Genet. 20, 325-326.

Liu, D., Black, B. L., and Derynck, R. (2001a). TGF-beta inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev. 15, 2950-2966. Liu, X., Sun, Y., Weinberg, R. A., and Lodish, H. F. (2001b). Ski/Sno and TGF-beta signaling. Cytokine Growth Factor Rev. 12, 1-8.

Liu, F. (2003). Receptor-regulated Smads in TGF-beta signaling. Front. Biosci. 8, sl280-1303.

Liu, D., Kang, J. S., and Derynck, R. (2004). TGF-beta-activated Smad3 represses MEF2-dependent transcription in myogenic differentiation. EMBO J. 23, 1557-1566. Lo, R. S., Chen, Y. G., Shi, Y., Pavletich, N. P., and Massague, J. (1998). The L3 loop: a structural motif determining' specific interactions between SMAD proteins and TGF-beta receptors. EMBO J. 77,996-1005.

Lo, R. S., Wotton, D., and Massague, J. (2001). Epidermal growth factor signaling via Ras controls the Smad transcriptional co-repressor TGIF. EMBO J. 20, 128-136.

Long, J., Matsuura, I., He, D., Wang, G., Shuai, K., and Liu, F.

(2003). Repression of Smad transcriptional activity by PIASy, an inhibitor of activated STAT. Proc. Natl. Acad. Sci. USA 100,

10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment