Info

Shen, X., Hu, P. P., Liberati, N. T., Datto, M. B., Frederick, J. P., and Wang, X. F. (1998). TGF-beta-induced phosphorylation of Smad3 regulates its interaction with coactivator p300/CREB-binding protein. Mol. Biol. Cell 9, 3309-3319. Shen, J., and Walsh, C. A. (2005). Targeted disruption of tgif, the mouse ortholog of a human holoprosencephaly gene, does not result in holoprosencephaly in mice. Mol. Cell. Biol. 25, 3639-3647.

Shi, Y., Hata, A., Lo, R. S., Massague, J., and Pavletich, N. P. (1997). A structural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87-93. Shi, Y., Wang, Y. F., Jayaraman, L., Yang, H., Massague, J., and Pavletich, N. P. (1998). Crystal structure of a Smad MH1 domain bound to DNA: insights on DNA binding in TGF-beta signaling. Cell 94, 585-594.

Shi, Y. (2001). Structural insights on Smad function in TGFbeta signaling. Bioessays 23, 223-232.

Shi, Y., and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700. Shimizu, K., Bourillot, P. Y., Nielsen, S. J., Zorn, A. M., and Gurdon, J. B. (2001). Swift is a novel BRCT domain coactivator of Smad2 in transforming growth factor beta signaling. Mol. Cell. Biol. 21, 3901-3912.

Shioda, T., Fenner, M. H., and Isselbacher, K. J. (1996). msgl, a novel melanocyte-specific gene, encodes a nuclear protein and is associated with pigmentation. Proc. Natl. Acad. Sci. USA 93, 12298-12303.

Shioda, T., Fenner, M. H., and Isselbacher, K. J. (1997). MSG1 and its related protein MRG1 share a transcription activating domain. Gene 204, 235-241.

Shioda, T., Lechleider, R. J., Dunwoodie, S. L., Li, H., Yahata, T., de Caestecker, M. P., Fenner, M. H., Roberts, A. B., and Isselbacher, K. J. (1998). Transcriptional activating activity of

Smad4: roles of SMAD hetero-oligomerization and enhancement by an associating transactivator. Proc. Natl. Acad. Sci. USA 95, 9785-9790.

Song, C. Z., Siok, T. E„ and Gelehrter, T. D. (1998). Smad4/DPC4 and Smad3 mediate transforming growth factor-beta (TGF-beta) signaling through direct binding to a novel TGF-beta-responsive element in the human plasminogen activator inhibitor-1 promoter. J. Biol. Chem. 273, 29287-29290. Song, C. Z., Tian, X., and Gelehrter, T. D. (1999). Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Proc. Natl. Acad. Sci. USA 96, 11776-11781. Souchelnytskyi, S., Tamaki, K., Engstrom, U., Wernstedt, C., ten Dijke, P., and Heldin, C. H. (1997). Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J. Biol. Chem. 272, 28107-28115. Staller, P., Peukert, K., Kiermaier, A., Seoane, J., Lukas, J., Karsunky, H., Moroy, T., Bartek, J., Massague, J., Hanel, F., and Eilers, M. (2001). Repression of pl5INK4b expression by Myc through association with Miz-1. Nat. Cell Biol. 3, 392-399. Stroschein, S. L., Wang, W., and Luo, K. (1999a). Cooperative binding of Smad proteins to two adjacent DNA elements in the plasminogen activator inhibitor-1 promoter mediates transforming growth factor beta-induced smad-dependent transcriptional activation. J. Biol. Chem. 274, 9431-9441. Stroschein, S. L., Wang, W., Zhou, S., Zhou, Q., and Luo, K. (1999b). Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein. Science 286, 771-774. Sun, Y., Liu, X., Eaton, E. N., Lane, W. S., Lodish, H. F., and Weinberg, R. A. (1999a). Interaction of the Ski oncoprotein with Smad3 regulates TGF-beta signaling. Mol. Cell 4, 499-509. Sun, Y., Liu, X., Ng-Eaton, E„ Lodish, H. F., and Weinberg, R. A. (1999b). SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling. Proc. Natl. Acad. Sci. USA 96, 12442-12447. Suzuki, H., Yagi, K., Kondo, M., Kato, M., Miyazono, K., and Miyazawa, K. (2004). c-Ski inhibits the TGF-beta signaling pathway through stabilization of inactive Smad complexes on Smad-binding elements. Oncogene 23, 5068-5076. Taatjes, D. J., Marr, M. T., and Tjian, R. (2004). Regulatory diversity among metazoan co-activator complexes. Nat. Rev. Mol. Cell. Biol. 5,403-410.

Takenoshita, S., Mogi, A., Nagashima, M., Yang, K., Yagi, K., Hanyu, A., Nagamachi, Y., Miyazono, K., and Hagiwara, K. (1998). Characterization of the MADH2/Smad2 gene, a human Mad homolog responsible for the transforming growth factor-beta and activin signal transduction pathway. Genomics 48, 1-11.

ten Dijke, P., Goumans, M. J., Itoh, F., and Itoh, S. (2002). Regulation of cell proliferation by Smad proteins. J. Cell Physiol. 191, 1-16.

ten Dijke, P., and Hill, C. S. (2004). New insights into TGF-beta-Smad signalling. Trends Biochem. Sci. 29, 265-273. Topper, J. N., DiChiara, M. R., Brown, J. D., Williams, A. J., Falb, D„ Collins, T., and Gimbrone, M. A, Jr. (1998). CREB binding protein is a required coactivator for Smad-dependent, transforming growth factor beta transcriptional responses in endothelial cells. Proc. Natl. Acad. Sci. USA 95, 9506-9511. Tsukazaki, T., Chiang, T. A., Davison, A. F., Attisano, L., and Wrana, J. L. (1998). SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95, 779-791. Tussie-Luna, M. I., Bayarsaihan, D., Seto, E., Ruddle, F. H., and Roy, A. L. (2002). Physical and functional interactions of histone deacetylase 3 with TFII-I family proteins and PIASxbeta. Proc. Natl. Acad. Sci. USA 99, 12807-12812.

Verschueren, K., Remade, J. E., Collart, C., Kraft, H., Baker, B. S., Tylzanowski, P., Nelles, L., Wuytens, G., Su, M. T., Bodmer, R., et al. (1999). SIP1, a novel zinc fmger/homeodomain repressor, interacts with Smad proteins and binds to 5-CACCT sequences in candidate target genes. J. Biol. Chem. 274, 20489-20498.

von Gersdorff, G., Susztak, K., Rezvani, F., Bitzer, M., Liang, D., and Bottinger, E. P. (2000). Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J. Biol. Chem. 275, 11320-11326.

Wang, G., Long, J., Matsuura, I., He, D., and Liu, F. (2005). The Smad3 linker region contains a transcriptional activation domain. Biochem. J. 386, 29-34.

Wicks, S. J., Lui, S., Abdel-Wahab, N., Mason, R. M., and Chantry, A. (2000). Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II. Mol. Cell. Biol. 20, 8103-8111.

Wong, C., Rougier-Chapman, E. M., Frederick, J. P., Datto, M. B., Liberati, N. T., Li, J. M„ and Wang, X. F. (1999). Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. Mol. Cell. Biol. 19, 1821-1830.

Wotton, D., Lo, R. S., Lee, S., and Massague, J. (1999a). A Smad transcriptional corepressor. Cell 97, 29-39.

Wotton, D., Lo, R. S., Swaby, L. A., and Massague, J. (1999b).

Multiple modes of repression by the Smad transcriptional corepressor TGIF. J. Biol. Chem. 274, 37105-37110.

Wotton, D., Knoepfler, P. S., Laherty, C. D., Eisenman, R. N., and Massague, J. (2001). The Smad transcriptional corepressor

TGIF recruits mSin3. Cell Growth Differ. 12, 457-463.

Wrana, J. L. (2000). Regulation of Smad activity. Cell 100,

0 0

Post a comment