Allen P.J. and Emerson, R. (1949). Guayule rubber, microbiological improvement by shrub retting. Industrial and Engineering Chemistry 41:346-365.

Bharadwaj, G. and Maheshwari, R. (1999). A comparison of thermal and kinetic parameters of trehalases from a thermophilic and a mesophilic fungus. FEMS Microbiol. Lett. 181:187-193.

Bhat, K.M. and Maheshwari, R. (1987). Sporotrichum thermophile growth, cellulose degradation and cellulose activity. Appl. Environ. Microbiol. 53:2175-2182.

Blöchl, E., Rachel, R., Burggraf, S., Hafenbrandl, D., Jannasch, H.W. and Stetter, K.O. (1997). Pyrolobus fumarii, gen. and sp. nov. represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1:14-21.

Brock, T.D. (1995). The road to Yellowstone—and beyond. Annu. Rev. Microbiol. 49:1-28.

Chang, Y. (1967). The fungi of wheat straw compost. II. Biochemical and physiological studies. Trans. Br. Mycol. Soc. 50:667-677.

Chaudhuri, A., Bharadwaj, G. and Maheshwari, R. (1999). An unusual pattern of invertase activity development in the thermophilic fungus Thermomyces lanuginosus. FEMS Microbiol. Lett. 177:39-45.

Chaudhuri, A. and Maheshwari, R. (1996). A novel invertase from a thermophilic fungus Thermomyces lanuginosus: its requirement of thiol and protein for activation. Arch. Biochem. Biophys. 327:98-106.

Cooney, D.G. and Emerson, R. (1964). Thermophilic Fungi: An Account of Their Biology, Activities and Classification. San Francisco: W.H. Freeman.

Crowe, J., Hoekstra, F. and Crowe, L.M. (1992). Anhydrobiosis. Annu. Rev. Plant Physiol. 54:579-599.

Eggins, H.O.W., von Szilvinyi, A. and Allsopp, D. (1972). The isolation of actively growing thermophilic fungi from insulated soils. Internat. Biodeterioration Bull. 8:53-58.

Gupta, S.D. and Maheshwari, R. (1985). Is organic acid required for nutrition of thermophilic fungi? Arch. Microbiol. 141:164-169.

Hedger, J.N. and Hudson, H.J. (1974). Nutritional studies of Thermomyces lanuginosus from wheat straw compost. Trans. Br. Mycol. Soc. 62:129-143.

Johri, B.N., Satyanarayana, T. and Olsen, J. (1999). Thermophilic Moulds in Biotechnology. Dordrecht: Kluwer Academic Publishers.

Maheshwari, R. (1997). The ecology of thermophilic fungi, pp. 278-289. In Tropical Mycology, eds. Janardhanan, K.K., Rajendran, C., Natarajan, K. and Hawksworth, D.L. Oxford & IBH, New Delhi.

Maheshwari, R. (2003). Enzymes of thermophilic fungi. In McGraw-Hill Yearbook of Science and Technology, pp. 114-116, McGraw-Hill Publishers, New York.

Maheshwari, R., Bharadwaj, G. and Bhat, M.K. (2000). Thermophilic fungi: Their physiology and enzymes. Microbiol. Mol. Biol. Revs. 64:461-488.

Maheshwari, R. and Balasubramanyam, P.V. (1988). Simultaneous utilization of glucose and sucrose by thermophilic fungi. J. Bacteriol. 170:3274-3280.

Miehe, H. (1907). Die Selbsterhitzung des Heus. Eine biologische Studie. Jena: Gustav Fischer.

Mishra, R.S. and Maheshwari, R. (1996). Amylases of the thermophilic fungus Thermomyces lanuginosus: their purification, properties, action on starch and responses to heat. J. Biosci. 21:653-672.

Miller, H.M., Sullivan, P.A. and Shepherd, M.G. (1974). Intracellular protein breakdown in thermophilic and mesophilic fungi. Biochem. J. 144:209-214.

Noack, K. (1920). Der Betriebstoffwechsel der thermophilen Pilze. Jahrb. Wiss. Bot. 59:413-466.

Palanivelu, P., Balasubramanyam, P.V. and Maheshwari, R. (1984). Co-induction of sucrose transport and invertase activities in a thermophilic fungus, Thermomyces lanuginosus. Arch. Microbiol. 139:44-47.

Prasad, A.R.S., Kurup, C.K.R. and Maheshwari, R. (1979). Effect of temperature on respiration of a mesophilic and thermophilic fungus. Plant Physiol. 64:347-348.

Rajasekaran, A.K. and Maheshwari, R. (1990). Growth kinetics and intracellular protein breakdown in mesophilic and thermophilic fungi. Indian J. Exp. Biol. 29:134-137.

Rajasekaran, A.K. and Maheshwari, R. (1993). Thermophilic fungi: an assessment of their potential for growth in soil. J. Biosci. 18:345-354.

Straatsma, G. and Samson, R.A. (1993). Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycol. Res. 97:321-328.

Tansey, M.R. and Jack, M.A. (1976). Thermophilic fungi in sun-heated soils. Mycologia 68:1061-1075.

Tendler, M.D., Korman, S. and Nishimoto, M. (1967). Effects of temperature and nutrition on macromolecule production by thermophilic Eumycophyta. Bull. Torrey Bot. Club 94:83-94.

Chapter 11

Photoresponses and Circadian Rhythm

Fungi live in terrestrial habitats. However, because fungi are non-green and their mycelium is generally hidden in substratum, the tendency is to disregard that light has any effect on them. Although generalizations cannot be made, the examples below will show the influence of light on fungal development. The genome analysis of the fungus Neurospora crassa led to unexpected identification of homologues of plant photoresponse proteins such as phytochromes and cryptochrome, sparking interest in the role of light in the development of fungi.

Was this article helpful?

0 0

Post a comment