Phylum summaries

Brief summaries of the primary reproductive and developmental strategies of each lower metazoan and deuterostome phyla follow. The variations are within each phylum are great, however, and the short summaries below are intended only to situate each phylum within the overall context of reproductive strategies and processes discussed earlier. Interested readers should consult the references listed for further details and analyses.

Phylum Placozoa

The limited information on Trichoplax adhaerens, the only known species of Placozoa, indicates that the organism has no capacity for sexual reproduction. Asexual reproduction, however, is very effective and diverse, occurring in three distinct modes. Simple fission, or division of the simple body by cell separation, is the most common mode. More rarely, two types of budding occur. In one form, hollow swarmers bud off the parent organism and may swim to remote locations to develop further. In other individuals, the attached buds may stretch and attach themselves to adjacent substrates before detaching from the parent. In both cases, cellular rearrangements similar to gastrulation occur.

Phylum Monoblastozoa

This phylum, represented only by the single genus Salinella, has been observed and described by only one author, and some researchers question its existence. The original description is vague, but describes asexual reproduction by a sort of transverse fission similar to that of placozoans.

Phylum Porifera

Sponges may be either gonochoristic or hermaphroditic, but most undergo some form of sexual reproduction. The exact origin of germ cells varies somewhat among species, but most sperm and oocytes develop from undifferentiated cells known as archeocytes in the central mesohyl (connective tissue) layer. In some species, sperm may develop through transformation of the flagellated collar cells that line the sponge's chambers and create the water currents responsible for the exchange of all materials within the sponge. Males are broadcast spawners, but most sponges undergo internal fertilization. Fertilization is followed by internal brooding of larvae in many sponges, including most marine calcareous sponges and the spongillid family of freshwater sponges. Whether sponges have true germ layers is often debated, since some cells can transform into any cell type even in the adult; however, cellular rearrangements comparable to gastrulation take place at the end of embryogenesis. Sponges are perhaps the most efficient phylum in the animal kingdom for asexual reproduction. They employ a number of different strategies ranging from simple fragmentation of the adult body to formation of specialized gemmules (reproductive buds), the latter being more common in the overwintering stages of freshwater species.

Phylum Cnidaria

Sexual reproduction is well developed throughout the phylum. Gonochoristic and hermaphroditic species are known to occur; however, the true jellyfishes (class Scyphozoa) and colonial hydroids (class Hydrozoa) are primarily gonochoristic. Germ cells develop in either the ectoderm or endoderm, depending on the class, but always originate from undifferentiated cells known as interstitial cells. Most species of cnidarians are broadcast spawners, but in some, such as the freshwater Hydra, the oocyte may be retained for internal fertilization. In most species, embryonic development leads to a planula larva that settles to the substrate for metamorphosis into the adult cnidarian. Asexual reproduction is very common and takes many different forms. Many species undergo alternation of generations, with asexually produced medusae (free-swimming jellyfish) alternating with sexually produced polyps attached to the substrate. Sexual and asexual mechanisms of reproduction may occur in either stage, however, depending on the species.

Phylum Ctenophora

Comb jellies are primarily hermaphroditic, with only a few gonochoristic species. They have simple gonads resembling those of the closely related cnidarians. Most are broadcast spawners, but some are fertilized internally and may even brood their larvae. Embryogenesis results in a cydippid larva that swims freely during its metamorphosis into an adult. Asexual reproduction is not known to occur in this phylum.

Phylum Rhombozoa

The dicyemid mesozoans are all parasites, and alternate between sexual stages in the adult host and asexual stages in the juvenile host. The sexual forms are hermaphroditic. These animals are structurally simple, barely qualifying as truly multicellular. They lack layers comparable to the germ layers of other animal phyla.

Phylum Orthonectida

Orthonectids are parasites that alternate between sexual and asexual stages within their host animal. Asexually produced plasmodia may develop into sexual forms, most of which are gonochoristic, with a few hermaphroditic species. Copulation is followed by internal fertilization, and the larva ultimately leaves the parent to seek a new host.

Phylum Platyhelminthes

The vast majority of flatworms are hermaphroditic, but some gonochoristic forms occur, including the medically important schistosome flukes. The reproductive systems of predominantly free-living turbellarians are simple and transient (temporary), whereas those of the parasitic tapeworms and flukes are complex and permanent, with many specialized organs. Copulation is the rule for reproduction in this phylum, followed by internal fertilization and either internal or external development. Fertilization generally involves incorporation of the full sperm into the oocyte. Internal development often takes place within specialized structures for maternal care of the larvae. Cleavage and embryogenesis occur in patterns unique to this phylum, especially among the tapeworms and flukes; there are many different forms of larvae and patterns of metamorphosis in this group. In addition, the tapeworms and flukes engage in regular alternation of sexual and asexual generations, perhaps producing the greatest number of progeny in the animal kingdom.

Phylum Nemertea

Nemerteans are primarily gonochoristic (except for the few freshwater and terrestrial species), with large but simple gonads. Most species are marine, and reproduce by broadcast spawning followed by external fertilization and embryonic development. They undergo spiral cleavage, and thus are generally considered to be related to the protostomes. Postembryonic development leads to formation of a pilidium larva in most nemerteans. Some species may reproduce asexually by fragmentation, but this pattern is uncommon.

Phylum Nemata (Nematoda)

Sexual reproduction is the rule among the roundworms; most species are gonochoristic with some sexual dimorphism. Some hermaphroditic species do exist. Reproductive systems are tubular; in copulation, the male introduces amoeboid sperm into the vagina of the female. The embryogenetic process begins with an unusual form of bilateral cleavage, which ends with the direct development of a juvenile form (often incorrectly called a larva) that is structurally like a miniature adult. There are five juvenile molts before the adult form is reached. Asexual reproduction is extremely rare, and only involves the mitotic division of female germ cells.

Phylum Nematomorpha

Horsehair worms are exclusively sexual and gonochoristic. The gametes develop in long strands attached to support cells.

Adult nematomorphs copulate, often in large masses; fertilization is either external or internal, depending on the species. Little is known about embryogenesis in this phylum, but it culminates in a distinctive free-swimming larva that must invade an arthropod host before it can transform itself into a juvenile. The juvenile in turn must leave the host before maturing into an adult. Asexual reproduction is unknown in this phylum.

Phylum Priapulida

Priapulids are all gonochoristic, with no known mode of asexual reproduction. Their reproductive systems are poorly described, but are similar to those of nematomorphans in being formed as strands of oocytes attached to a common stalk. Most priapulids are broadcast spawners, with external fertilization and embryogenesis. Postembryonic development involves a distinctive larva that undergoes metamorphosis to become an adult.

Phylum Acanthocephala

Thorny-headed worms are gonochoristic, with complex reproductive systems, copulation, and internal fertilization. They develop through an intricate series of stages, including an acanthor larva and a cystacanth juvenile. The various stages of development occur inside different hosts of these parasitic animals. Asexual reproduction does not occur in this phylum.

Phylum Rotifera

As a group, rotifers exhibit a variety of reproductive strategies, with the three classes distinguished by either hermaphroditic or gonochoristic sexuality. Some species, especially in freshwater habitats, alternate between generations produced by parthenogenesis, in which no fertilization occurs, and typical generations produced by copulation and fertilization. The gonads of these tiny animals consist of only a few gametes enclosed by a thin sac. Embryogenesis culminates in direct development of a juvenile that quickly matures into an adult.

Phylum Gastrotricha

Gastrotrichs are generally hermaphroditic, with sperm and oocytes generally forming within the same gonad. Adults reciprocally inseminate each other during copulation. Fertilization is internal, but embryonic development is external. Postembryonic development is direct, and there is no known example of asexual reproduction in this phylum.

Phylum Loricifera

The loriciferans are exclusively sexual and gonochoristic in their reproduction. Little is known about their embryonic development, but it ends with the formation of a distinctive Higgins larva, or perhaps juvenile, that is similar to the adult.

Phylum Kinorhyncha

All known kinorhynchs are sexual and gonochoristic. Copulation, fertilization, and embryonic development are poorly known. Postembryonic development appears to be direct.

Phylum Gnathostomulida

Gnathostomulids are primarily hermaphroditic, and none are known to reproduce asexually. Simple reproductive sys tems, copulation, and internal fertilization characterize this group. The spiral cleavage is similar to that of protostome animals, and development progresses directly into a juvenile and then an adult form.

Phylum Chaetognatha

Adult arrow worms are hermaphroditic, with well-developed male and female gonads in separate body cavities. Fertilization is internal, but development of the embryos is external, though some species brood their young. Cleavage is radial, and the coeloblastula undergoes gastrulation similar to that of echinoderms and other deuterostomes. Asexual reproduction is not known to occur.

Phylum Hemichordata

Acorn worms are gonochoristic, and gametes are spawned into the open seawater. Fertilization and embryonic development, beginning with radial cleavage, occur in the plankton, and are similar to the patterns of echinoderms. Embryos develop directly or through a distinctive tornaria larva. Some species may reproduce asexually by fragmentation.

Phylum Echinodermata

Starfishes, sea urchins, sea lillies, and their relatives are extremely diverse, and exhibit a variety of reproductive and development modes. In all, however, typical deuterostome development is the rule, beginning with radial cleavage. Larval forms are varied, and tend toward different forms in different classes. Both sexual and asexual reproduction occur within the phylum, but broadcast spawning and planktonic development are the most common patterns.

Phylum Chordata

The invertebrate chordates, including tunicates, lancelets, and their relatives, generally reproduce by spawning and development planktonically in the seawater. Sexual and asexual reproduction may occur in the urochordates, but cephalo-chordates only undergo sexual processes. Cleavage is generally radial, but may be more mosaic than that of other deuterostomes.

Phylum Entoprocta

Various entoprocts may be either gonochoristic or hermaphroditic, depending on the species. A few may reproduce asexually by budding. Males generally spawn into open water, but the sperm are usually taken up by females for internal fertilization. Cleavage is spiral, possibly indicating some relationship to protostomes.

Phylum Ectoprocta (Bryozoa)

Most bryozoans are hermaphroditic. As colonial animals, all reproduce by asexual means as well. Males spawn sperm, which females take up for internal fertilization. Cleavage is radial, and most species have planktonic larvae.

Phylum Brachiopoda

Lampshells are primarily gonochoristic. Fertilization is variable, but cleavage is always radial. Depending on the class, they may undergo planktonic development through a larva, or may develop directly. Asexual reproduction has not been described for the group.

Phylum Phoronida

The vast majority of phoronids are hermaphroditic, with female and male gonads functioning simultaneously. Fertilization is usually internal. Cleavage is radial, followed by planktonic development in most species, generally through a distinctive actinotroch larva. Asexual reproduction by budding or fission occurs in a few species.

Phylum Cycliophora

Cycliophorans alternate between sexual and asexual stages. They are gonochoristic, and the male attaches to the female for insemination followed by internal fertilization and development. The modified trochophore larva is somewhat similar to that of some protostome groups.

Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook


  • birikti
    What are the reproductive forms of each phylum (sexual and asexual)?
    6 years ago
  • jessica
    What type of reproduction occurs to phylum chordata?
    6 years ago

Post a comment