Aggressive and defensive behavior

Gastropods, pycnogonids, sea stars, sea urchins, fishes, and sea turtles are predators that feed on invertebrates. Moreover, jellyfishes and comb jellies can be predators of other cnidar-ians and ctenophores. Sea turtles, especially Dermochelys coriacea, feed on scyphomedusae such as A. aurita. In addition, birds may add scyphozoans to their diets. Some benthic animals like the nudibranchs may feed on the scyphistomae of Cyanea capillata and A. aurita. A single nudibranch can consume as many as 200 polyps per day; however, not all nudi-branchs are able to eat scyphozoans. As in the pelagic environment, scyphozoans in their benthic stages may eat one another; for example, the scyphistomae of A. aurita eat the planulae larvae of C. capillata as well as the larvae of their own species. In addition to natural predation, scyphozoans may be affected by fisheries.

In general, these species defend themselves against predators by the production of physical structures or the emission of various chemicals. Sponges are the most diverse source of marine natural products; some of these compounds offer potential pharmacological benefits. Compounds isolated from sponges vary widely in structural complexity; they include sterols, terpenoids, amino acid derivatives, saponins, and macrolides. The toxins produced by temperate and tropical sponges have been shown to deter predation by fishes, asteroids, and gastropods. The organic component of sponges consists primarily of NaOH-soluble and insoluble protein, NaOH being the chemical formula for sodium hydroxide, or lye. About 56% of Antarctic sponges are toxic. Leucetta lep-torhapsis and Mycale acerata are highly toxic; however, the asteroid Perknaster fucus antarcticus is a specialist and is able to feed on M. acerata without succumbing to its toxins. This finding suggests that some asteroids have evolved physiological mechanisms that neutralize or sequester (compartmentalize) sponge toxins. In many cases these secondary metabolites are not necessarily toxic, but may make the sponge distasteful to predators and may be more effective in deterring predation. These compounds not only help the sponges avoid predators, but also prevent infection by microorganisms. In addition, they allow the sponges to compete for space with other sessile invertebrates such as ectoprocts, ascidians, corals and even other sponges. Clinoid sponges are among the most common and destructive endolithic (living embedded in rock surfaces) borers on coral reefs worldwide. Cliona, Anthosigmella, and Spheciospongia of the order Hadromerida; and Siphonodictyon, of the order Haplosclerida are siliceous sponges known to bore into hard substrates. Such sponges are able to excavate galleries in calcareous material by removing small fragments of the mineral by specialized archaeocyte cells. The cells secrete chemicals that dissolve the calcareous substrate. When infested corals are split open, clinoid sponges appear as brown, yellow, or orange patches lining the corroded interiors of the coral skeleton.

The sponge Cinachyra antarctica has distinctively long spicule tufts that emerge from the spiral conules on their surface. This species, found throughout Antarctica at depths of 59-2,496 ft (18-761 m), uses its spicules to protect itself from predators. When spicules are removed, C. antarctica is made vulnerable to predators.

Defensive and feeding activities are closely associated in most cnidarians; the tentacles of most anemones and jellyfishes serve both purposes. In some cases, however, both functions are performed by separate structures. Sea anemones and corals have developed several specialize structures used to defend against territorial invasion. Three of these structures, namely acrorhagi (special fighting tentacles), catch tentacles, and sweeper tentacles, are modified feeding tentacles. The mesentenic filament is another modified defensive structure. The acrorhagi are located at the margin of the anemone's body column. When these anemones make physical contact with one another, usually with their tentacles, the acrorhagi expand and apply themselves on the target organism. The ectodermal tissue of the acrorhagus lifts away from its underlying mesenclyme (cellular jellylike material) while the acrorhagus discharges its nemactocysts, and the ectoderm then clings to the target organism. This process is called peeling. As a result of continued discharges from the nematocysts, the victim's tissue beneath the acrorhagial peel becomes necrotic and dies. Catch tentacles (in sea anemones) and sweeper tentacles (in scleractinian corals) develop from feeding tentacles that undergo a morphological change when the organism comes into contact with appropriate other species. In response to weeks of contact, the feeding tentacles alter their form, structure, and complement of cnidae. Catch and sweeper tentacles do not adhere to potential food objects; when they are touched by prey, they actually retract. Sweeper tentacles emerge at night; as their name implies, they flail about or undulate. They can reach 5-10 times the length of feeding tentacles. The coral Montastrea cavernosa is a mildly aggressive coral, capable of destroying the tissue of a variety of subordinate coral species with its mesenterial filaments. But its own mesenterial filaments can be destroyed by M. annularis when both are placed together. These species have sweeper tentacles, which are multipurpose structures with the capacity to regulate the distance between colonies, thus functioning as organs of competition.

Although the ability of hydroids to resist predation is often attributed to their nematocysts and associated toxins, the chemical compounds make them much less attractive to a potential hydroid predator. Some species of hydroids secrete chemicals that deter feeding by the pinfish Lagodon rhomboides. After having been treated with potassium chloride, which forces them to discharge their nematocysts, both Halocordyle disticha and Tubularia crocea become palatable; this suggests that these species rely on nematocysts to defend themselves against predators. However, species such as Corydendrium par-asiticum, Eudendrium carneum, Hydractinia symbiologicarpus, and Tridentata marginata, remain unpalatable after their nematocysts have been discharged.

Essentials of Human Physiology

Essentials of Human Physiology

This ebook provides an introductory explanation of the workings of the human body, with an effort to draw connections between the body systems and explain their interdependencies. A framework for the book is homeostasis and how the body maintains balance within each system. This is intended as a first introduction to physiology for a college-level course.

Get My Free Ebook

Post a comment