Wextor

First, we use WEXTOR (Reips & Neuhaus, 2002), a Web service, to create, store, and visualize experimental designs and procedures for experiments on the Web and in the laboratory. WEXTOR dynamically creates the customized Web pages needed for the experimental procedure. It supports complete and incomplete factorial designs with between-subjects, within-subjects, and quasi-experimental (natural) factors, as well as mixed designs. It implements client-side, response time measurement and contains a content wizard for creating materials and dependent measures (button scales, graphical scales, multiple-choice items, etc.) on the experiment pages.

Several of the techniques presented earlier in this chapter are built into WEXTOR, (e.g., the warm-up and high hurdle techniques), and it automatically avoids several methodological pitfalls in Internet-based research. WEXTOR uses nonobvious file naming, automatic avoidance of page number confounding, JavaScript test redirect functionality to minimize dropout, and randomized distribution of participants to experimental conditions. It also provides for optional assignment to levels of quasi-experimental factors, optional client-side response time measurement, optional implementation of the high hurdle technique for dropout management, and randomly generated continuous user IDs for enhanced multiple submission control, and it automatically implements meta tags that keep the materials hidden from search engine scripts and prevents the caching of outdated versions at proxy servers.

The English version of WEXTOR is available at http://psych-wextor.unizh.ch/wextor/en/index.php. WEXTOR is currently available in version 2.2. After going through a sign-up procedure, WEXTOR can be used to design and manage experiments from anywhere on the Internet using a login/password combination. For the purpose of guiding the reader through the process, I created an account in WEXTOR that already contains a complete version of the cup experiment. Readers of this chapter may log in using the login/password combination "APA/handbook." Also, a step-by-step explanation of how to create a Web-based replication of the cup experiment (Reips, 2003) is at http://www. psychologie.unizh.ch/sowi/reips/SPUDM_03/index. html. Figure 6.3 shows WEXTOR's entry page.

The process of creating an experimental design and procedure for an experiment with WEXTOR involves ten steps. The first steps are decisions that an experimenter would make whether using WEXTOR or any other device for generating the experiment, like listing the factors and levels of within-and between-subjects factors, deciding what quasi-experimental factors (if any) to use, and specifying how assignment to conditions will function. WEXTOR adapts to the user input and produces an organized, pictorial representation of the experimental design and the Web pages required to implement that design. Figure 6.4 shows the visualization of

Login/Register About WEXTOR News

Contaa_

Support

Welcome to WEXTOR

I Mtp: //psych-wextor.unizh.ch/wextor/en /

Was this article helpful?

0 0
Corner The Local Search Engine Market

Corner The Local Search Engine Market

Four Steps to Ensure your Business will Capitalize from Local Google Search Exposure. We live in an age where everyday more and more people are connecting online. The internet is more of a household necessity than passing fad.

Get My Free Ebook


Post a comment