Soil Testing For Detecting Plant Nutritional Needs

D.I. Arnon. Growth and function as criteria in determining the essential nature of inorganic nutrients. In: E. Truog, ed. Mineral Nutrition of Plants. Madison, Wis.: University of Wisconsin, Press, 1951, pp. 313-341.

R.D. Munson, W.L. Nelson. Principles and practices in plant analysis. In: L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Madison, Wis.: Soil Science Society of America, Inc., 1973, pp. 223-248.

A Ulrich. Critical nitrate levels of sugar beets estimated from analysis of petiole and blades, with special reference to yields and sucrose concentrations. Soil Sci. 69:291-309, 1949. A Ulrich. Plant tissue analysis as a guide in fertilizing crops. In: H.M. Reisenhauer, ed. Soil and Plant Tissue Testing in California. Riverside: University of California Bulletin 1976, 1879, pp. 1-4. H. Mills, J.B. Jones, Jr. Plant Analysis Handbook II. Athens, Ga.: Micro Macro Publishing, Inc., 1996, p. 422.

L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Revised edition. Madison, Wis.: Soil Science Society of America, Inc., 1973, p. 491.

S.R. Aldrich. Plant analysis: problems and opportunities. In: L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Revised edition. Madison, Wis.: Soil Science Society of America, Inc., 1973, pp. 213-221.

T.E. Bates. Factors affecting critical nutrient concentrations in plants and their evaluation: a review. Soil Sci. 112:116-130, 1971.

J.G. Cruz-Castillo, S. Ganeshanandam, B.R. McKay, G.S. Lawes, C.R.O. Lawoko, D.J. Woolley. Applications of canonical discriminant analysis in horticultural research. HortScience 29:1115-1119, 1994.

32. R.B. Beverly. A Practical Guide to the Diagnosis and Recommendation Integrated System. Athens, Ga.: Micro Macro Publishing, Inc., 1991, pp. 1-70.

33. J.L. Walworth, M.E. Sumner. Foliar diagnosis: a review. In: B. Tinker, A. Lauchli, eds. Advances in Plant Nutrition, Vol. 3. New York: Praeger, 1988, pp. 193-245.

34. D.W. Goodall, F.G. Gregory. Chemical Composition of Plants as an Index of Their Nutritional Status. Technical Communication No. 17. East Malling, Kent, England: Imperial Bureau of Horticulture and Plantation Crops, 1947, pp. 1-167.

35. J.B. Jones, Jr, W.J.A. Steyn. Sampling, handling, and analyzing plant tissue samples. In: L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Revised edition, Madison, Wis.: Soil Science Society of America, Inc., 1973, pp. 249-270.

36. Y.P. Kalra, ed. Handbook of Reference Methods for Plant Analysis. Boca Raton, Fla.: CRC Press, 1998, p. 300.

37. T.K. Hartz, W.E. Bendixen, L. Wierdsma. The value of presidedress soil nitrate as a nitrogen management tool in irrigated vegetable production. HortScience 35:651-656, 2000.

38. A. Ulrich. Nitrate content of grape leaf petioles as an indicator of the nitrogen status of the plant. Proc. Am. Soc. Hortic. Sci. 41:213-218, 1942.

39. D.D. Warncke. Soil and plant tissue testing for nitrogen management in carrots. Commun. Soil Sci. Plant Anal. 27:597-605, 1996.

40. C.M.J. Williams, N.A. Maier. Determination of the nitrogen status of irrigated potato crops. 2. A simple on farm quick test for nitrate-nitrogen in petiole sap. J. Plant Nutr. 13:985-993, 1990.

41. B. Vaughan, K.A. Barbarick, D.G. Westfall, P.L. Chapman. Tissue nitrogen levels for dryland hard red winter wheat. Agron. J. 82:561-565, 1990.

42. J.M. Jemison, R.H. Fox. A quick-test procedure for soil and plant-tissue nitrates using test strips and a hand-held reflectometer. Commun. Soil Sci. Plant Anal. 19:1569-1582, 1988.

43. A. Scaife, K.L. Stevens. Monitoring sap nitrate in vegetable crops—comparison of test strips with electrode methods, and effects of time of day and leaf position. Commun. Soil Sci. Plant Anal. 14:761-771, 1983.

44. M.P. Westcott, C.J. Rosen, W.P. Inskeep. Direct measurement of petiole sap nitrate in potato to determine crop nitrogen status. J. Plant Nutr. 16:515-521, 1993.

45. H.D. Sunderman, A.B. Onken, L.R. Hossner. Nitrate concentration of cotton petioles as influenced by cultivar, row spacing, and N application rate. Agron. J. 71:731-737, 1979.

46. U. Kafkafi, R. Ganmore-Neumann. Ammonium in plant tissue: real or artifact? J. Plant Nutr. 20:107-118, 1997.

47. G.N. Hoffer. Testing corn stalks chemically to aid in determining their food needs. Indiana Agric. Exp. Sta. Bull. 298, 1930, p. 31.

48. G.N. Hoffer, J.F. Trost. The accumulation of iron and aluminum compounds in corn plants and its probable relation to root rots. J. Am. Soc. Agron. 15:323-331, 1923.

49. G.W. Leeper. Manganese deficiency and accumulation of nitrates in plants. J. Aus. Inst. Agric. Sci. 7:161-162, 1941.

50. W.Z. Huang, X.Y. Liang, X.J. Lun. Diagnosis of potassium deficiency in bananas using the method of different values. Commun. Soil Sci. Plant Anal. 23:75-84, 1992.

51. A. Ulrich. Potassium content of grape leaf petioles and blades contrasted with soil analysis as an indicator of the potassium status of the plant. Proc. Am. Soc. Hortic. Sci. 41:204-212, 1942.

52. F.T. Turner, M.F. Jund. Chlorophyll meter to predict nitrogen topdress requirement for semidwarf rice. Agron. J. 83:926-928, 1991.

53. C.S.T. Daughtry, C.L. Walthall, M.S. Kim, E.B. deColstoun, J.E. McMurtrey III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing Environ. 74:229-239, 2000.

54. R. Lavon, E.E. Goldschmidt. Enzymatic methods for detection of mineral element deficiencies in citrus leaves: a mini-review. J. Plant Nutr. 22:139-150, 1999.

55. A. Bar Akiva. Biochemical indications as a means of distinguishing between iron and manganese deficiency symptoms in citrus plants. Nature, 190:647-648, 1961.

56. A. Bar Akiva. Leaf analysis: possible limitations. Proc. 18th Int. Hort. Congr. 4:333-345, 1972.

57. A. Bar Akiva. Substitutes for benzidine as H-donors in the peroxidase assay for rapid diagnosis of iron deficiency in plants. Commun. Soil Sci. Plant Anal. 15:929-934, 1984.

A. Bar Akiva, M. Kaplan, R. Lavon. The use of biochemical indicator for diagnosing micronutrient deficiencies of grapefruit trees under field conditions. Agrochimica 11:283-288, 1967. N.P. Kaur, P.N. Takkar, V.K. Nayyar. Catalase, peroxidase, and chlorophyll relationship to yield and iron deficiency chlorosis in Cicer genotypes. J. Plant Nutr. 7:1213-1220, 1984. E.O. Leidi, M. Gomez, M.D. de la Guardia. Evaluation of catalase and peroxidase activity as indicators of Fe and Mn nutrition for soybean. J. Plant Nutr. 9:1239-1249, 1986.

V. Nenova, I. Stoyanov. Physiological and biochemical changes in young maize plants under iron deficiency. 2. Catalase, peroxidase, and nitrate reductase activities in leaves. J. Plant Nutr. 18:2081-2091, 1995.

A. Ranieri, A. Castagna, B. Baldan, G.F. Soldatini. Iron deficiency differently affects peroxidase iso-forms in sunflower. J. Exp. Bot. 52:25-35, 2001.

A. Bar Akiva, R. Lavon. Carbonic anhydrase activity as an indicator of zinc deficiency in citrus leaves. J. Hortic. Sci. 44:359-362, 1969.

C. Chatterjee, R. Jain, B.K. Dube, N. Nautiyal. Use of carbonic anhydrase for determining zinc status of sugar cane. Trop. Agric. 75:480-483, 1998.

N. Pandey, G.C. Pathak, A.K. Singh, C.P. Sharma. Enzymic changes in response to zinc nutrition. J. Plant Physiol. 159:1151-1153, 2002.

I. Snir. Carbonic anhydrase activity as an indicator of zinc deficiency in pecan leaves. Plant Soil 74:287-289, 1983.

H. Sasaki, T. Hirose, Y. Watanabe, R. Ohsugi. Carbonic anhydrase activity and CO2-transfer resistance in Zn-deficient rice leaves. Plant Physiol. 118:929-934, 1998.

P.A. Moore, Jr., W.H. Patrick, Jr. Effect of zinc deficiency on alcohol dehydrogenase activity and nutrient uptake in rice. Agron. J. 80:882-885, 1988.

A. Bar Akiva, R. Lavon, J. Sagiv. Ascorbic acid oxidase activity as a measure of the copper nutrition requirements of citrus trees. Agrochimica 14:47-54, 1969.

A. Shaked, A. Bar Akiva. Nitrate reductase activity as an indication of molybdenum requirement in citrus plants. Phyochemistry 6:347-350, 1967.

A. Polle, K. Chakrabarti, S. Chakrabarti, F. Seifert, P. Schramel, H. Rennenberg. Antioxidants and manganese deficiency in needles of Norway spruce (Picea abies L.) trees. Plant Physiol. 99:1084-1089, 1992.

A. Bar Akiva, D.N. Maynard, J.E. English. Rapid tissue test for diagnosing iron deficiencies in vegetable crops. HortScience 13:284-285, 1978.

J.M. Ruiz, I. Lopez-Cantero, L. Romero. Relationship between calcium and pyruvate kinase. Biol. Plant 43:359-362, 2000.

S.W. Melsted, T.R. Peck. The principles of soil testing. In: L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Revised edition, Madison, Wis.: Soil Science Society of America, Inc., 1973, pp. 13-21.

T.R. Peck, S.W. Melsted. Field sampling for soil testing. In: L.M. Walsh, J.D. Beaton, eds. Soil Testing and Plant Analysis. Revised edition, Madison, Wis.: Soil Science Society of America, Inc., 1973, pp. 67-75.

P.C. Robert. Precision agriculture: a challenge for crop nutrition management. Plant Soil, 247:143-149, 2002.

M.F. Morgan. Chemical Soil Diagnosis by the Universal Soil Testing System. New Haven: Connecticut Agric. Exp. Sta. Bull. 450, 1941, pp. 579-628.

A.V. Barker. Nitrate Determinations in Soil, Water and Plants. Massachusetts Agric. Exp. Sta. Bull. 611, 1974, p. 35.

R.H. Bray, L.T. Kurtz. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59:39-45, 1945.

A. Mehlich. Mehlich-3 soil test extractant—a modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 15:1409-1416, 1984.

Northeast Coordinating Committee on Soil Testing. Recommended Soil Testing Procedures for the Northeastern United States. 2nd ed. Newark, Del.: Northeastern Regional Publication No. 493. College of Agriculture and Natural Resources, University of Delaware, 1995, pp. 1-15. S.R. Olsen, L.A. Dean. Phosphorus. In: C.A. Black, ed-in-chief, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, Agronomy 9. Madison, Wis.: American Society of Agronomy, 1965, pp. 1035-1049.

83. F.S. Watanabe, S.R. Olsen. Colorimetric determination of phosphorus in water extracts of soils. Soil Sci. 93:183-188, 1962.

84. C.A. Black, ed-in-chief. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Agronomy 9. Madison, Wis.: American Society of Agronomy, 1965, p. 1572.

85. A.L. Page, R.H. Miller, D.R. Keeney, eds. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd Ed., Agronomy 9. Madison, Wis.: American Society of Agronomy, 1982, p. 1159.

86. Soil and Plant Analysis Council, Inc. Handbook on Reference Methods for Soil Analysis. Athens, Ga.: Council on Soil Testing and Plant Analysis, 1992, p. 202.

87. R. Wang, K. Guegler, S.T. LaBrie, N.M. Crawford. Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. Plant Cell 12:1491-1509, 2000.

88. H. Zhang, B.G. Forde. Regulation of Arabidopsis root development by nitrate availability. J. Exp. Bot. 51:51-59, 2000.

89. P.N. Soltanpour. 1999. Soil testing. Colorado State University Cooperative Extension Fact Sheet 501. Fort Collins, Colo.

90. R.H. Beck. Applications in sustainable production. Commun. Soil Sci. Plant Anal. 31:1621-1625, 2000.

91. P.N. Soltanpour, J.A. Delgado. Profitable and sustainable soil test-based nutrient management. Commun. Soil Sci. Plant Anal. 33:2557-2583, 2002.

92. D. Granatstein, D.F. Bezdicek. The need for a soil quality index: local and regional perspectives. Am. J. Altern. Agric. 7:12-16, 1992.

93. J.L. Smith, R.I. Papendick, J.J. Halvorson. Using multiple-variable indicator kriging for evaluating soil quality. Soil Sci. Soc. Am. J. 57:743-749, 1993.

94. J.F. von Liebig. Principles of Agricultural Chemistry, With Special Reference to the Late Researches Made in England. London: Walton & Maberly, 1855, p. 136.

95. G.O. Ware, K. Ohki, L.C. Moon. The Mitscherlich plant growth model for determining critical nutrient deficiency level. Agron. J. 74:88-91, 1982.

96. A.E. Johnston. Efficient use of nutrients in agricultural production systems. Commun. Soil Sci. Plant Anal. 31:1599-1620, 2000.

97. L.E. Lanyon. Dairy manure and plant nutrient management issues affecting water quality and the dairy industry. J. Dairy Sci. 77:1999-2007, 1994.

98. G.M. Pierzynski, G.F. Vance, J.T. Sims. Soils and Environmental Quality. Boca Raton, Fla.: CRC Press, 2000, 459 p.

99. R.L. Hamlin, C. Schatz, A.V. Barker. Zinc accumulation in Brassica juncea as influenced by nitrogen and phosphorus nutrition. J. PlantNutr. 26:177-190, 2003.

100. P.B.A.N. Kumar, V. Dushenkov, H. Motto, I. Raskin. Phytoextraction: the use of plants to remove heavy metals from soils. Environ. Sci. Tech. 29:1232-1238, 1995.

101. M.J. Blaylock, J.W. Huang. Phytoextraction of metals. In: I. Raskin, B.D. Ensley, eds. Phytoremediation of Toxic Metals—Using Plants to Clean Up the Environment. New York: Wiley, 2000, pp. 53-70.

102. S.D. Cunningham, D.W. Ow. Promises and prospects of phytoremediation. Plant Physiol. 110:715-719, 1996.

103. J.W. Huang, J. Chen, W.R. Berti, S.D. Cunningham. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ. Sci. Tech. 31:800-805, 1997.

104. K.A. Anderson, B.A. Magnuson, M.L. Tschirgi, B. Smith. Determining the geographic origin of potatoes with trace metal analysis using statistical and neural network classifiers. J. Agric. Food Chem. 47:1568-1575, 1999.

105. D.A. Kopsell, W.M. Randle. Genetic variances and selection potential for selenium accumulation in a rapid-cycling Brassica oleracea population. J. Am. Soc. Hortic. Sci. 126:329-335, 2001.

106. N. Terry, A.M. Zayed, M.P. deSouza, A.S. Tarun. Selenium in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:401-432, 2000.

107. S. Rahman, L.C. Munn, G.F. Vance. Detecting salinity and soil nutrient deficiencies using spot satellite data. Soil Sci. 158:31-39, 1994.

108. J.A. Delgado, R.R. Riggenbach, M.J. Shaffer, A. Thompson, R.T. Sparks, R.F. Follett, M.A. Dillon, R.J. Ristau, A. Stuebe, H.R. Duke. Use of innovative tools to increase nitrogen use efficiency and protect environmental quality in crop rotations. Commun. Soil Sci. Plant Anal. 32:1321-1354, 2001.

109. G.W. Hergert. A futuristic view of soil and plant analysis and nutrient recommendations. Commun. Soil Sci. Plant Anal. 29:1441-1454, 1998.

110. P.C. Robert, R.H. Rust, W.E. Larson. Proceedings of the 4th International Conference on Precision Agriculture, 19-22 July 1998, Part A and Part B. St. Paul, Minne. Madison, Wis.: American Society of Agronomy, 1999, p. 1938.

111. R.W. Heiniger. Understanding geographic information systems and global positioning systems in horticultural applications. HortTechnology 9:539-547, 1999.

112. H. Melakeberhan. Embracing the emerging precision agriculture technologies for site-specific management of yield-limiting factors. J. Nematol. 34:185-188, 2002.

113. J.T. Moraghan, L. Smith, A. Sims. Remote sensing of sugarbeet canopies for improved nitrogen fertilizer recommendations for a subsequent wheat crop. Commun. Soil Sci. Plant Anal. 31:827-836, 2000.

114. A.L. Sims, L.J. Smith, J.T. Moraghan. Spring wheat response to fertilizer nitrogen following a sugar beet crop varying in canopy color. Precision Agric. 3:283-295, 2002.

115. E. Schnug, K. Panten, S. Haneklaus. Sampling and nutrient recommendations—the future. Commun. Soil Sci. Plant Anal. 29:1456-1462, 1998.

116. R.B. Beverly. Video image analysis as a nondestructive measure of plant vigor for precision agriculture. Commun. Soil Sci. Plant Anal. 27:607-614, 1996.

117. F. Zheng, H. Schreier. Quantification of soil patterns and field soil fertility using spectral reflection and digital processing of aerial photographs. Fert. Res. 16:15-30, 1988.

Was this article helpful?

0 0

Post a comment