The earliest reptile fossils known are from the Upper Carboniferous period, approximately 270 million years ago, but by this time several of the reptilian orders were already in evidence, including both anapsid cotylosaurs and synapsid pe-lycosaurs. This finding implies that reptile evolution began much earlier. Another implication is that temporal vacuities (empty spaces) and emarginations (notches), although widely distributed in reptiles, are not defining characteristics of this class of vertebrates, because several groups do not have them. The earliest defining characteristics may never be known unless some very early fossils in good condition are found. It is likely that a desiccation-resistant integument was present. Another area on which to focus is the egg and the reproductive process. The egg is macrolecithal (contains much yolk) and is surrounded by a hard shell in turtles, crocodilians, and geckos and a soft or parchment-like shell in the other squa-mates. In either case, a shelled egg requires that fertilization occur before shell formation. This means that fertilization must take place within the female's body (i.e., in her oviducts)

rather than externally as is typical of fishes and amphibians. Consequently, most male reptiles possess copulatory organs that deposit sperm into the cloaca of the female. From the cloaca the sperm cells migrate up the oviduct guided by chemical stimuli. Male turtles and crocodilians have a single penis homologous to the penis of mammals. This organ develops during embryogenesis from the medial aspect of the embryonic cloaca. Male lizards and snakes have paired hemipenes, which develop during embryogenesis from the right and left lateral aspects of the embryonic cloaca. Some male snakes have bifurcated hemipenes, so the males appear to have four copulatory organs. Thus internal fertilization is the rule among extant reptiles. Even tuatara, the males of which lack copulatory organs, transfer sperm in the manner of most birds with a so-called cloacal kiss involving apposition of male and female cloacae and then forceful expulsion of seminal fluid directly into the female's cloaca. Internal fertilization is necessary because of shell formation around eggs. Many reptiles live far from standing or running water, thus external fertilization in the manner of most fishes or amphibians would be associated with risk of desiccating both sperm and eggs.

The oviducts of some female reptiles are capable of storing sperm in viable condition for months or even years. In some turtles and snakes, fertilization can occur three years after insemination. Theoretically, a female need not mate each year, but she might nevertheless produce young each year using sperm stored from an earlier copulation. Although this interesting possibility has been known from observation of captive reptiles for approximately five decades, we still do not know whether or how often female reptiles use it under natural conditions. Another curiosity of reptile reproduction is that the females of some species of lizards and snakes are capable of reproducing parthenogenetically, even though reproduction in these species normally occurs sexually. (These species should not be confused with others that only reproduce parthenogenetically. This is not a widespread mode of reproduction in reptiles, but it is known to occur in several species of lizards and at least one snake.) Facultative parthenogenesis has only recently been discovered among captive reptiles, and there is as yet no information on whether it occurs in nature.

Macrolecithal eggs allow embryos to complete development within the egg or within the mother in the case of vi-viparity, such that the neonate is essentially a miniature version of its parents rather than a larva that must complete development during an initial period of posthatching life, as is common among amphibians. The reptilian embryo lies at the top of the large supply of yolk, and cell division does not involve the yolk, which becomes an extra embryonic source of nourishment for the growing embryo. A disk called the vitelline plexus surrounds the embryo and is the source of the three membranes (chorion, amnion, and allantois) that form a soft "shell" within the outer shell of the reptilian egg. Together these structures defend the water balance of the developing embryo and store waste products. Although reptile eggs absorb water from the substrate in which they are deposited, these eggs do not have to be immersed in water as is required for the eggs of most amphibians. Immersion of most reptile eggs results in suffocation of the embryos. Female rep tiles deposit their eggs in carefully selected terrestrial sites that provide adequate soil moisture and protect the eggs from extremes of temperature.

Some species have another strategy for protecting embryos from abiotic and biotic exigencies. These reptiles retain the embryos and incubate them within the maternal body. The mother's thermoregulatory and osmoregulatory behaviors contribute to the embryos' welfare and to the mother's welfare. The mother's predator-avoidance behaviors can enhance the fitness of embryos exposed to greater predation elsewhere. In view of these potential advantages, which in some habitats might be considerable, it is not surprising that live-bearing has evolved many times in reptiles, although it is quite rare in amphibians. All crocodilians, turtles, and tuatara are egg layers. At least 19% of lizard species and 20% of snakes are live-bearers. Cladistic studies have shown that viviparity has evolved independently many times within squamates, in at least 45 lineages of lizards and 35 lineages of snakes. It also appears that viviparity is an irreversible trait and that once vi-viparity evolves, oviparous descendants rarely occur. The term embryo retention is used for species in which females retain embryos until very near the completion of embryogenesis when shells are added. The eggs are deposited and then hatch within 72-96 hours. Examples include the North American smooth green snake Liochlorophis vernalis, and the European sand lizard Lacerta agilis. Most important to understand is that the embryos are lecithinotrophic (nourishment of the embryos comes entirely from the yolk) with no additional pos-tovulatory contribution from the mother. The mother, however, may play a role in gas exchange of the embryos. This process can involve proliferation of maternal capillaries in the vicinity of the embryos, a form of rudimentary pla-centation. Some species that give birth to live young also have lecithinotrophic embryos that undergo rudimentary placen-tation. Some embryo-retaining species eventually add a shell to their eggs and oviposit them within a few days of hatching. Others never add a shell, and the young are simply born alive, although they need to extricate themselves from the ex-traembryonic membranes that surround them. Many her-petologists prefer to abandon the term ovoviviparous because this word connotes that shelled eggs hatch in the maternal oviduct. No species is known in which this occurs. Accordingly, the term viviparous is used for all live-bearers, and her-petologists recognize that considerable variation exists in the degree to which viviparous embryos are matrotrophic (supported by maternal resources through a placenta).

Although females of oviparous species deposit their eggs in sheltered positions, the vagaries of climate can result in relative cooling or heating of oviposition sites with associated changes in moisture. This realization has led to considerable research on the effects of these abiotic factors on embryonic development. It is now known that within the range of 68-90°F (20-32°C), incubation time can vary as much as fivefold, and that neonatal viability is inversely related to incubation time. Hatchlings from rapidly developing embryos at high temperatures perform poorly on tests of speed and endurance relative to hatchlings from slower-developing embryos at lower temperatures. The slower-developing embryos typically give rise to larger hatchlings than do their rapidly

Geoemyda Spengleri
The black-breasted leaf turtle (Geoemyda spengleri) lives in the mountainous regions of northern Vietnam and southern China. (Photo by Henri Janssen. Reproduced by permission.)

developing counterparts. In the context of this work, it was found that the sex ratio of hatchling turtles varied depending on incubation temperature. In several species of tortoise (Go-pherus and Testudo), for example, almost all embryos became males at low incubation temperatures (77-86°F [25-30°C]), and most became females between 88°F and 93°F (31-34°C). Temperature-dependent sex determination (TSD) is known to be widespread, occurring in 12 families of turtles, all croc-odilians, the tuatara, and in at least three families of lizards. However, the effect of temperature differs in the various groups. Most turtles exhibit the pattern described, whereas most crocodilians and lizards exhibit the opposite pattern, females being produced at low incubation temperatures and males at higher ones. In a few crocodilians, turtles, and lizards females are produced at high and low incubation temperatures and males at intermediate temperatures. It is possible that some viviparous species experience TSD, in which case the thermoregulatory behavior of the mother would determine the sex of the embryos, but this phenomenon has not been observed.

The effect of the discovery of TSD has been enormous. Almost all developmental biologists previously believed that sex in higher vertebrates was genetically determined. This phenomenon has important implications for the management of threatened or endangered populations, especially if the program contains a captive propagation component. Unless care is taken to incubate eggs at a variety of temperatures, the program could end up with a strongly biased sex ratio. Reflection on the effects of global warming on reptiles exhibiting TSD generates the worry that extinction could be brought about from widely skewed sex ratios.

Pregnancy And Childbirth

Pregnancy And Childbirth

If Pregnancy Is Something That Frightens You, It's Time To Convert Your Fear Into Joy. Ready To Give Birth To A Child? Is The New Status Hitting Your State Of Mind? Are You Still Scared To Undergo All The Pain That Your Best Friend Underwent Just A Few Days Back? Not Convinced With The Answers Given By The Experts?

Get My Free Ebook


  • Klaudia Hartmann
    Does fertilization occur before or after formation of shell in reptiles?
    6 years ago

Post a comment