The Parkinson's-Reversing Breakthrough

What is Parkinsons Disease

Get Instant Access

Supported by The Grace and Tom Benson Parkinson's disease research fund. REFERENCES

1. Bertoli-Avella AM, Oostra BA, Heutnik P. Chasing genes in Alzheimer's and Parkinson's disease. Hum Genet 2004; 114:413-438.

2. Ascherio A, Chen H, Weisskopf MG, et al. Pesticide exposure and risk for Parkinson's disease. Ann Neurol 2006; 60:197-203.

3. Sano I, Gamo T, Kakimoto Y, Taniguchi K, Takesada M, Nishinuma K. Distribution of catechol compounds in human brain. Biochim Biophys Acta 1959; 32:586-587.

Bertler A, Rosengren E. Occurrence and distribution of dopamine in brain and other tissues. Experientia 1959; 15:10-11.

Lindvall O, Bjorklund A. Anatomy of the dopaminergic neuron systems in the rat brain. Adv Biochem Psychopharmacol 1978; 19:1-23.

Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 1988; 334:345-348. Mendez I, Sanchez-Pernaute R, Cooper O, et al. Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 2005; 128:1498-1510.

Sulzer D, Bogulavsky J, Larsen KE, et al. Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci USA 2000; 97:11869-11874.

Liang CL, Nelson O, Yazdani U, Pasbakhsh P, German DC. Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: human midbrain dopamine neurons. J Comp Neurol 2004; 473:97-106. Kingsbury AE, Marsden CD, Foster OJ. The vulnerability of nigral neurons to Parkinson's disease is unrelated to their intrinsic capacity for dopamine synthesis: an in situ hybridization study. Mov Disord 1999; 14:206-218.

Tong ZY, Kingsbury AE, Foster OJ. Up-regulation of tyrosine hydroxylase mRNA in a sub-population of A10 dopamine neurons in Parkinson's disease. Brain Res Mol Brain Res 2000; 79:45-54.

Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 1999; 122(Pt 8):1421-1436. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain 1999; 122(Pt 8):1437-1448.

Zecca L, Tampellini D, Gatti A, et al. The neuromelanin of substantia nigra and its interaction with metals. J Neural Transm 2002; 109:663-672.

Zucca FA, Giaveri G, Gallorini M, et al. The neuromelanin of substantia nigra: physiological and pathogenic aspects. Pigment Cell Res 2004; 17:610-617. Speciale SG, Liang CL, Sonsalla PK, Edwards RH, German DC. The neurotoxin 1-methyl-4-phenylpyridinium is sequestered within neurons that contain the vesicular monoamine transporter. Neuroscience 1998; 84:1177-1185.

Gainetdinov RR, Fumagalli F, Wang YM, et al. Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. J Neurochem 1998; 70:1973-1978.

Miller GW, Erickson JD, Perez JT, et al. Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson's disease. Exp Neurol 1999; 156:138-148.

Gonzalez-Hernandez T, Barroso-Chinea P, De La Cruz Muros I, Del Mar Perez-Delgado M, Rodriguez M. Expression of dopamine and vesicular monoamine transporters and differential vulnerability of mesostriatal dopaminergic neurons. J Comp Neurol 2004; 479:198-215.

Uhl GR. Dopamine transporter: basic science and human variation of a key molecule for dopaminergic function, locomotion, and parkinsonism. Mov Disord 2003; 18(suppl 7):S71-S80.

Bannon MJ. The dopamine transporter: role in neurotoxicity and human disease. Toxicol Appl Pharmacol 2005; 204:355-360.

Shimada S, Kitayama S, Walther D, Uhl G. Dopamine transporter mRNA: dense expression in ventral midbrain neurons. Brain Res Mol Brain Res 1992; 13:359-362. Ciliax BJ, Drash GW, Staley JK, et al. Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 1999; 409:38-56.

Miller GW, Gainetdinov RR, Levey AI, Caron MG. Dopamine transporters and neuronal injury. Trends Pharmacol Sci 1999; 20:424-429.

Uhl GR. Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson's disease. Ann Neurol 1998; 43:555-560.

26. Haeseleer F, Imanishi Y, Sokal I, Filipek S, Palczewski K. Calcium-binding proteins: intracellular sensors from the calmodulin superfamily. Biochem Biophys Res Comm 2002; 290:615-623.

27. Parent A, Fortin M, Cote PY, Cicchetti F. Calcium-binding proteins in primate basal ganglia. Neurosci Res 1996; 25:309-334.

28. Resibois A, Blachier F, Rogers JH, Lawson DE, Pochet R. Comparison between rat brain calbindin- and calretinin-immuno-reactivities. Adv Exp Med Biol 1990; 269:211-214.

29. Rogers JH, Resibois A. Calretinin and calbindin-D28k in rat brain: patterns of partial co-localization. Neuroscience 1992; 51:843-865.

30. Rogers JH. Immunohistochemical markers in rat brain: colocalization of calretinin and calbindin-D28k with tyrosine hydroxylase. Brain Res 1992; 587:203-210.

31. Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: co-localization with Calbindin-D28K and calretinin. Neuroscience 1996; 75:523-533.

32. Rogers JH. Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. J Cell Biol 1987; 105:1343-1353.

33. Resibois A, Rogers JH. Calretinin in rat brain: an immunohistochemical study. Neuroscience 1992; 46:101-134.

34. Isaacs KR, Jacobowitz DM. Mapping of the colocalization of calretinin and tyrosine hydroxylase in the rat substantia nigra and ventral tegmental area. Exp Brain Res 1994; 99:34-42.

35. Krzywkowski P, Jacobowitz DM, Lamour Y. Calretinin-containing pathways in the rat forebrain. Brain Res 1995; 705:273-294.

36. Lavoie B, Parent A. Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 1991; 2:601-604.

37. German DC, Manaye KF, Sonsalla PK, Brooks BA. Midbrain dopaminergic cell loss in Parkinson's disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann NY Acad Sci 1992; 648:42-62.

38. Yamada T, McGeer PL, Baimbridge KG, McGeer EG. Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 1990; 526:303-307.

39. Mouatt-Prigent A, Agid Y, Hirsch EC. Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease? Brain Res 1994; 668:62-70.

40. Airaksinen MS, Thoenen H, Meyer M. Vulnerability of midbrain dopaminergic neurons in calbindin-D28k-deficient mice: lack of evidence for a neuroprotective role of endogenous calbindin in MPTP-treated and weaver mice. Eur J Neurosci 1997; 9:120-127.

41. Klapstein GJ, Vietla S, Lieberman DN, et al. Calbindin-D28k fails to protect hippocam-pal neurons against ischemia in spite of its cytoplasmic calcium buffering properties: evidence from calbindin-D28k knockout mice. Neuroscience 1998; 85:361-373.

42. A human mitochondrial genome database. A compendium of polymorphisms and mutations of the human mitochondrial DNA.

43. Wallace DC. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 2005; 39:359-407.

44. Schapira AH. Mitochondrial disease. Lancet 2006; 368:70-82.

45. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 2006; 38:518-520.

46. Salvioli S, Bonafe M, Capri M, Monti D, Franceschi C. Mitochondria, aging and longevity—a new perspective. FEBS Lett 2001; 492:9-13.

47. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beal MF, Wallace DC. Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 1992; 2:324-329.

48. Ikebe S, Tanaka M, Ohno K, et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun 1990; 170:1044-1048.

49. Ikebe S, Tanaka M, Ozawa T. Point mutations of mitochondrial genome in Parkinson's disease. Brain Res Mol Brain Res 1995; 28:281-295.

50. Kosel S, Egensperger R, Schnopp NM, Graeber MB. The "common deletion" is not increased in parkinsonian substantia nigra as shown by competitive polymerase chain reaction. Mov Disord 1997; 12:639-645.

51. Sandy MS, Langston JW, Smith MT, Di Monte DA. PCR analysis of platelet mtDNA: lack of specific changes in Parkinson's disease. Mov Disord 1993; 8:74-82.

52. Zhang J, Montine TJ, Smith MA, et al. The mitochondrial common deletion in Parkinson's disease and related movement disorders. Parkinsonism Relat Disord 2002; 8:165-170.

53. Mann VM, Cooper JM, Schapira AH. Quantitation of a mitochondrial DNA deletion in Parkinson's disease. FEBS Lett 1992; 299:218-222.

54. Bender A, Krishnan KJ, Morris CM, et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38:515-517.

55. Gu G, Reyes PE, Golden GT, et al. Mitochondrial DNA deletions/rearrangements in parkinson disease and related neurodegenerative disorders. J Neuropathol Exp Neurol 2002; 61:634-639.

56. Itoh K, Weis S, Mehraein P, Muller-Hocker J. Defects of cytochrome c oxidase in the sub-stantia nigra of Parkinson's disease: and immunohistochemical and morphometric study. Mov Disord 1997; 12:9-16.

57. Varnum DS, Stevens LC. Aphakia, a new mutation in the mouse. J Hered 1968; 59:147-150.

58. Semina EV, Murray JC, Reiter R, Hrstka RF, Graw J. Deletion in the promoter region and altered expression of pitx3 homeobox gene in aphakic mice. Hum Mol Genet 2000; 9:1575-1585.

59. Smidt MP, van Schaic HS, Lancelot C, et al. Ahomeodomain gene Ptx3 has highly restric-tred brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 1997; 94:13305-13310.

60. Korotkova TM, Ponomarenko AP, Hass HL, Sergeeva OA. Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci 2005; 22:1287-1293.

61. Nunes I, Tovmasian LT, Silva RM, Burke RE, Goff SP. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA 2003; 100:4245-4250.

62. Hwang DY, Ardayfio P, Kang UJ, Semina EV, Kim KS. Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res 2003; 114:123-131.

63. Smidt MP, Smits SM, Burbach JP. Homeobox gene Pitx3 and its role in the development of dopamine neurons of the substantia nigra. Cell Tissue Res 2004; 318:35-43.

64. Maxwell SL, Ho HY, Kuehner E, Zhao S, Li M. Pitx3 regulates tyrosine hydroxylase expression in the substantia nigra and identifies a subgroup of mesencephalic dopamin-ergic progenitor neurons during mouse development. Dev Biol 2005; 282:467-479.

65. van den Munckhof P, Luc KC, Ste-Marie L, et al. Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development 2003; 130:2535-2542.

66. Hwang DY, Fleming SM, Ardayfio P, et al. 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx 3-deficient aphakic mice: behavioral characterization of a novel genetic model of Parkinson's disease. J Neurosci 2005; 25:2132-2137.

67. Ledesma A, de Lacoba MG, Rial E. The mitochondrial uncoupling proteins. Genome Biol 2002; 3:REVIEWS3015.

68. Krauss S, Zhang CY, Lowell BB. The mitochondrial uncoupling-protein homologues. Nat Rev Mol Cell Biol 2005; 6:248-261.

69. Andrews ZB, Horvath B, Barnstable CJ, et al. Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease. J Neurosci 2005; 25: 184-191.

70. Kim-Han JS, Dugan LL. Mitochondrial uncoupling proteins in the central nervous system. Antioxid Redox Signal 2005; 7:1173-1181.

71. Kim-Han JS, Reichert SA, Quick KL, Dugan LL. BMCP1: a mitochondrial uncoupling protein in neurons which regulates mitochondrial function and oxidant production. J Neurochem 2001; 79:658-668.

72. Richard D, Clavel S, Huang Q, Sanchis D, Riquier D. Uncoupling protein 2int eh brain: distribution and function. Bioch Soc Trans 2001; 29:812-817.

73. Haeckel O, Wildmann J, Miki T, Seino S, Roeper J. K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 2005; 8:1742-1751.

74. Conti B, Sugama S, Lucero J, et al. Uncoupling protein 2 protects dopaminergic neurons from acute 1,2,3,6-methyl-phenyl-tetrahydropyridine toxicity. J Neurochem 2005; 93:493-501.

75. Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL. Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: Effects on MPP(+)-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity. J Neurosci Res 2006; 84:1358-66.

76. Rakic P, Sidman RL. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol 1973; 152:103-132.

77. Rakic P, Sidman RL. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 1973; 152:133-161.

78. Rakic P, Sidman RL. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci USA 1973; 70:240-244.

79. Triarhou LC. Biology and pathology of the Weaver mutant mouse. Adv Exp Med Biol 2002; 517:15-42.

80. Verina T, Tang X, Fitzpatrick L, Norton J, Vogelweid C, Ghetti B. Degeneration of Sertoli and spermatogenic cells in homozygous and heterozygous weaver mice. J Neurogenet 1995; 9:251-265.

81. Eisenberg B, Messer A. Tonic/clonic seizures in a mouse mutant carrying the weaver gene. Neurosci Lett 1989; 96:168-172.

82. Blum M, Weickert C, Carrasco E. The weaver GIRK2 mutation leads to decreased levels of serum thyroid hormone: Characterization of the effect on midbrain dopaminergic neuron survival. Exp. Neurol 1999; 160:413-424.

83. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat Genet 1995; 11:126-129.

84. Slesinger PA, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 1996; 16:321-331.

85. Hess EJ. Identification of the weaver mouse mutation: the end of the beginning. Neuron 1996; 16:1073-1076.

86. Navarro B, Kennedy ME, Velimirovic B, Bhat D, Peterson AS, Clapham DE. Nonselective and G betagamma-insensitive weaver K+ channels. Science 1996; 272:1950-1953.

87. Lauritzen I, De Weille J, Adelbrecht C, et al. Comparative expression of the inward rectifier K+ channel GIRK2 in the cerebellum of normal and weaver mutant mice. Brain Res 1997; 753:8-17.

88. Wei J, Dlouhy SR, Bayer S, et al. In situ hybridization analysis of Girk2 expression in the developing central nervous system in normal and weaver mice. J Neuropathol Exp Neurol 1997; 56:762-771.

89. Rossi P, De Filippi G, Armano S, Taglietti V, D'Angelo E. The weaver mutation causes a loss of inward rectifier current regulation in premigratory granule cells of the mouse cerebellum. J Neurosci 1998; 18:3537-3547.

90. Rezai Z, Yoon CH. Abnormal Rate of Granule Cell Migration in the Cerebellum of "Weaver" Mutant Mice. Dev Biol 1972; 29:17-26.

91. Maricich SM, Soha J, Trenkner E, Herrup K. Failed cell migration and death of purkinje cells and deep nuclear neurons in the weaver cerebellum. J Neurosci 1997; 17:3675-3683.

92. Schein JC, Hunter DD, Roffler-Tarlov S. Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev Biol 1998; 204:432-450.

93. Bayer, SA Wills KV, Triarhou LC, Verina T, Thomas JD, Ghetti B. Selective vulnerability of late-generated dopaminergic neurons of the substantia nigra in weaver mutant mice. Proc Natl Acad Sci USA 1995; 92:9137-9140.

94. Marti J, Wills KV, Ghetti B, Bayer SA. The weaver gene continues to target late-generated dopaminergic neurons in midbrain areas at P90. Brain Res Dev Brain Res 2000; 122:173-181.

95. Inanobe A, Yoshimoto Y, Horio Y, et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J Neurosci 1999; 19:1006-1017.

Triarhou LC, Norton J, Ghetti B. Mesencephalic dopamine cell deficit involves areas A8, A9 and A10 in weaver mutant mice. Exp Brain Res 1988; 70:256-265. Graybiel AM, Ohta K, Roffler-Tarlov S. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. I. Gradients and compartments. J Neu-rosci 1990; 10:720-733.

Roffler-Tarlov S, Pugatch D, Graybiel AM. Patterns of cell and fiber vulnerability in the mesostriatal system of the mutant mouse weaver. II. High affinity uptake sites for dopamine. J Neurosci 1990; 10:734-740.

Phillipson OT. The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J Comp Neurol 1979; 187:85-98.

Nelson EL, Liang CL, Sinton CM, German DC. Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol 1996; 369:361-371. Richter JA, Stotz EH, Ghetti B, Simon JR. Comparison of alterations in tyrosine hydrox-ylase, dopamine levels, and dopamine uptake in the striatum of the weaver mutant mouse. Neurochem Res 1992; 17:437-441.

Schmidt MJ, Sawyer BD, Perry KW, Fuller RW, Foreman, MM Ghetti B. Dopamine deficiency in the weaver mutant mouse. J Neurosci 1982;2:376-380.

Simon JR, Richter JA, Ghetti B. Age-dependent alterations in dopamine content, tyro-sine hydroxylase activity, and dopamine uptake in the striatum of the weaver mutant mouse. J Neurochem 1994; 62:543-548.

Simon JR, Ghetti B. The weaver mutant mouse as a model of nigrostriatal dysfunction. Mol Neurobiol 1994; 9:183-189.

Roffler-Tarlov S, Graybiel AM. Weaver mutation has differential effects on the dopamine-containing innervation of the limbic and nonlimbic striatum. Nature 1984; 307:62-66. Liesi P, Stewart RR, Wright JM. Involvement of GIRK2 in postnatal development of the weaver cerebellum. J Neurosci Res 2000; 60:164-173.

Liss B, Neu A, Roeper J. The weaver mouse gain-of-function phenotype of dopaminer-gic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J Neurosci 1999; 19:8839-8848.

Bandmann O, Davis MB, Marsden CD, Wood NW. The human homologue of the weaver mouse gene in familial and sporadic Parkinson's disease. Neuroscience 1996; 72:877-879. Chandy KG, Gutman GA. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci 1993; 14:434.

Shieh CC, Coghlan M, Sullivan JP, Gopalakrishnan M. Potassium channels: molecular defects, diseases, and therapeutic opportunities. Pharmacol Rev 2000; 52:557-594. CA Doupnik, N Davidson, HA Lester. The inward rectifier potassium channel family. Curr Opin Neurobiol 1995; 5:268-277.

Liss B, Bruns R, Roeper J. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. Embo J 1999; 18: 833-846,.

Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 2006; 440:470-476.

Seino S, Iwanaga T, Nagashima K, Miki T. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 2000; 49:311-318.

Polak M, Shield J. Neonatal Diabetes Mellitus-genetic aspects 2004. Pediatr Endocrinol Rev 2004; 2:193-198.

Hussain K, Cosgrove KE. From congenital hyperinsulinism to diabetes mellitus: the role of pancreatic beta-cell KATP channels. Pediatr Diabetes 2005; 6:103-113. Gloyn AL, Siddiqui J, Ellard S. Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27:220-231.

Proks P, Lippiat JD. Membrane ion channels and diabetes. Curr Pharm Des 2006; 12:485-501.

Was this article helpful?

0 0
Delicious Diabetic Recipes

Delicious Diabetic Recipes

This brilliant guide will teach you how to cook all those delicious recipes for people who have diabetes.

Get My Free Ebook

Post a comment