References

Dorn Spinal Therapy

Spine Healing Therapy

Get Instant Access

1. Kolb, L. and Himmelsbach, C. K. (1938) Clinical studies of drug addiction, III. A critical review of the withdrawal treatments with method of evaluating abstinence syndromes. Am. J. Psychiatry 94, 759-764.

2. Pathos, E., Rada, P., Mark, G. P., and Hoebel, B. G. (1991) Dopamine microdialysis in the nucleus accumbens during acute and chronic, naloxone-precipitated withdrawal and clonidine treatment. Brain Res. 566, 348-350.

3. Harris, G. C. and Aston-Jones, G. A. (1994) Involvement of D2 dopamine receptors in the nucleus accumbens in the opiate withdrawal syndrome. Nature 371, 155-157.

4. Druhan, J. P., Walters, C. L., and Aston-Jones, G. (2000) Behavioral activation induced by D2-like receptor stimulation during opiate withdrawal. J. Pharmcol. Exp. Ther. 294, 531-538.

5. Buccafusco, J. J. (1991) Inhibition of the morphine withdrawal syndrome by a novel muscarinic antagonist (4-DAMP). Life Sci. 48, 749-756.

6. Buccafusco, J. J. (1992) Neuropharmacologic and behavioral actions of clonidine: interactions with central neurotransmit-ters. Int. Rev. Neurobiol. 33, 55-107.

7. Zhang, L. C. and Buccafusco, J. J. (2000) Adaptive changes in M1 muscarinic receptors localized to specific rostral brain regions during and after morphine withdrawal. Neuropharmacology 39, 1720-1734.

8. Dahlstrom, A. and Fuxe, K. (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta Physiol. Scand. 232 (Suppl.), 1-55.

9. Foote, S. L., Bloom, F. E., and Aston-Jones, G. (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol. Rev. 63, 844-914.

10. Jones, B. E. and Moore, R. Y. (1977) Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res. 127, 23-53.

11. Nygren, L. G. and Olson, L. (1977) A new major projection from locus coeruleus: the main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res. 132, 85-93.

12. Cedarbaum, J. M. and Aghajanian, G. K. (1978) Activation of locus coeruleus neurons by peripheral stimuli: modulation by a collateral inhibitory mechanism. Life Sci. 23, 1383-1392.

13. Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., and Shipley, M. T. (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234, 734-737.

14. Luppi, P. H., Aston-Jones, G., Akaoka, H., Chouvet, G., and Jouvet, M. (1995) Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and phaseolus vulgaris leuco-agglutinin. Neuroscience 65, 119-160.

15. Valentino, R. J., Curtis, A. L., Page, M. E., Pavcovich, L. A., and Florin-Lechner, S. M. (1998) Activation of the locus coeruleus brain noradrenergic system during stress: circuitry, consequences, and regulation. Adv. Pharmacol. 42, 781-784.

16. Van Bockstaele, E. J., Bajic, D., Proudfit, H., and Valentino, R. J. (2001) Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol. Behav. 73, 273-283.

17. Ennis, M. and Aston-Jones, G. (1988) Activation of locus coeruleus from nucleus paragigantocellularis: a new excitatory amino acid pathway in brain. J. Neurosci. 8, 3644-3657.

18. Rasmussen, K. and Aghajanian, G. K. (1989) Withdrawal-induced activation of locus coeruleus neurons in opiate-dependent rats: attenuation by lesions of the nucleus paragigantocellularis. Brain Res. 505, 346-350.

19. Aghajanian, G. K. (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276,186-187.

20. Valentino, R. J. and Wehby, R. G. (1989) Locus coeruleus discharge characteristics of morphine-dependent rats: Effects of naltrexone. Brain Res. 488, 126-134.

21. Rasmussen, K., Beitner, D. B., Krystal, J. H., Aghajanian, G. K., and Nestler, E. J. (1990) Opiate withdrawal and the rat locus coeruleus: behavioral, electrophysiological and biochemical correlates. J. Neurosci. 10, 2308-2317.

22. Akaoka, H. and Aston-Jones, G. A. (1991) Opiate withdrawal-induced hyperactivity of locus coeruleus neurons is substantially mediated by augmented excitatory amino acid input. J. Neurosci. 11, 3830-3839.

23. Crawley, J. N., Laverty, R., and Roth, R. (1979) Clonidine reversal of increased norepinephrine metabolite levels during morphine withdrawal. Eur. J. Pharm. 57, 247-250.

24. Laverty, R. and Roth, R. H. (1980) Clonidine reverses the increased norepinephrine turnover during morphine withdrawal in rats. Brain Res. 182, 482.

25. Done, C., Silverstone, P., and Sharp, T. (1992) Effect of naloxone-precipitated morphine withdrawal on noradrenaline release in rat hippocampus in vivo. Eur. J. Pharm. 215, 333-336.

26. Tseng, L. F., Loh, H. H., and Wei, E. T. (1975) Effects of clonidine on morphine withdrawal signs in the rat. Eur. J. Pharmacol. 30, 93-99.

27. Gold, M. S., Redmond, D. E., Jr., and Kleber, H. D. (1978) Clonidine blocks acute opiate-withdrawal symptoms. Lancet 2, 599-602.

28. Taylor, J. R., Elsworth, J. D., Garcia, E. J., Grant, S. J., Roth, R. H., and Redmond, D. E., Jr. (1988) Clonidine infusion into the locus coeruleus attenuates behavioral and neurochemical changes associated with naloxone-precipitated withdrawal. Psychopharmacology 96, 121-134.

29. Maldonado, R. and Koob, G. F. (1993) Destruction of the locus coeruleus decreases physical signs of opiate withdrawal. Brain Res. 605,128-138.

30. Maldonado, R., Stinus, L., Gold, L. H., and Koob, G. F., (1992) Role of different brain structures in the expression of the physical morphine withdrawal syndrome. J. Pharmacol. Exp. Ther. 261, 669-677.

31. Caille, S., Espejo, E. F., Reneric, J., Cador, M., Koob, G. F., and Stinus, L. (1999) Total neurochemical lesion of noradren-ergic neurons of the locus coeruleus does not alter either naloxone-precipitated or spontaneous opiate withdrawal nor does it influence ability of clonidine to reverse opiate withdrawal. J. Pharmacol. Exp. Ther. 290, 881-892.

32. Delfs, J. M., Zhu, Y., Druhan, J. P., and Aston-Jones, G. (2000) Noradrenaline in the ventral forebrain is critical for opiate withdrawal-induced aversion. Nature 403, 430-434.

33. MacDonald, J. C., Williams, J. T., Osborne, P. B., and Bellchambers, C. E. (1997) Where is the locus in opioid withdrawal? TIPS 18,134-140.

34. Conn, P. J. and Pin, J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. 37, 205-237.

35. Schoepp, D. D. and Conn, J. P. (1993) Metabotropic glutamate receptors in brain function and pathology. Trends Pharm. Sci. 14, 13-20.

36. Pin, J. P. and Duvoisin, R. (1994) The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1-26.

37. Herrero, I., Miras-Portugal, M. T., and Sanches-Prieto, J. (1992) Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. Nature 360, 163-166.

38. Gereau, R. W. and Conn, P. J. (1995) Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. J. Neurosci. 15, 6879-6889.

39. Cartmell, J. and Schoepp, D. D. (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neu-rochem. 75, 889-907.

40. Rasmussen, K., Krystal, J. H., and Aghajanian, G. K. (1991) Excitatory amino acids and morphine withdrawal: differential effects of central and peripheral kynurenic acid administration. Psychopharmacology 105, 508-512.

41. Tung, C. S., Grenhoff, J., Svensson, T. H. (1990) Morphine withdrawal responses of rat locus coeruleus neurons are blocked by an excitatory amino-acid antagonist. Acta Phys. Scand. 138, 581-582.

42. Aghajanian, G. K., Kogan, J. H., and Moghaddam, B. (1994) Opiate withdrawal increases glutamate and aspartate efflux in the locus coeruleus: an in vivo microdialysis study. Brain Res. 636,126-130.

43. Zhang, T., Feng, Y., Rockhold, R. W., and Ho, I. K. (1994) Naloxone-precipitated morphine withdrawal increases pontine glutamate levels in the rat. Life Sci. 55, PL25-PL31.

44. Feng, Y. Z., Zhang, T., Rockhold, R. W., and Ho I. K. (1995) Increased locus coeruleus glutamate levels are associated with naloxone-precipitated withdrawal from butorphanol in the rat. Neurochem. Res. 20, 745-751.

45. Hoshi, K., Ma, T, and Ho, I. K. (1996) Precipitated K-opioid receptor agonist withdrawal increases glutamate in rat locus coeruleus. Eur. J. Pharmacol. 314, 301-30.

46. Koob, G. F. and Bloom, F. E., (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715-723.

47. Koob, G. F., Wall, T. L., and Bloom F. E. (1989) Nucleus accumbens as a substrate for the aversive stimulus effects of opiate withdrawal. Psychopharmacology 98, 530-534.

48. Stinus, L., Le Moal, M., and Koob, G. F. (1990) Nucleus accumbens and amygdala are possible substrates for the aversive stimulus effects of opiate withdrawal. Neuroscience 37, 767-773.

49. Walters, C. L., Aston-Jones, G., and Druhan, J. P. (2000) Expression of Fos-related antigens in the nucleus accumbens during opiate withdrawal and their attenuation by a D2 dopamine receptor agonist. Neuropsychopharmacology 23, 307-315.

50. Harris, G. and Aston-Jones, G. (2001) Augmented accumbal serotonin levels decrease the preference for a morphine associated environment during withdrawal. Neuropsychopharmacology 22, 75-85.

51. Sepulveda, M. J., Hernandez, L., Rada, P., Tucci, S., and Contreras, E. (1998) Effect of precipitated withdrawal on extracellular glutamate and aspartate in the nucleus accumbens of chronically morphine-treated rats: an in vivo microdialysis study. Pharmacol. Biochem. Behav. 60, 255-262.

52. Jhamandas, K. H., Marsala, M., Ibuki, T., and Yaksh, T. L. (1996) Spinal amino acid release and precipitated withdrawal in rats chronically infused with spinal morphine. J. Neurosci. 16, 2758-2766.

53. Ozawa, T., Nakagawa, T., Shige, K., Minami, M., and Satoh, M. (2001) Changes in the expression of glial glutamate transporters in the rat brain accompanied with morphine dependence and naloxone-precipitated withdrawal. Brain Res. 905, 245-258.

54. Manzoni, O. J. and Williams, J. T. (1999) Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J. Neurosci. 19, 6629-6636.

55. Herman, B. H., Vocci, F., and Bridge, P. (1995) The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal: medication development issues for opiate addiction. Neuropsychopharma-cology 13, 269-294.

56. Herman, B. H. and O'Brien, C. P. (1997) Clinical medications development for opiate addiction: focus on nonopioids and opioid antagonists for the amelioration of opiate withdrawal symptoms and relapse prevention. Sem. Neuroscience 9, 158-172.

57. Trujillo, K. A. and Akil, H. (1991) Inhibition of morphine tolerance and dependence by the NMDA receptor antagonist MK-801. Science 251, 85-87.

58. Tiseo, P. J. and Inturrisi, C. E. (1993) Attenuation and reversal of morphine tolerance by the competitive N-Methyl-d-Aspartate receptor antagonist, LY274614. J. Pharmacol. Exp. Ther. 264, 1090-1096.

59. Tiseo, P. J., Cheng, J., Pasternak, G. W., and Inturrisi, C. E. (1994) Modulation of morphine tolerance by the competitive N-methyl-d-aspartate receptor antagonist LY274614: assesment of opioid receptor changes. J. Pharmacol. Exp. Ther. 268, 195-201.

60. Elliott, K., Minami, N., Kolesnikov, Y. A., Pasternak, G. W., and Inturrisi, C. E. (1994) The NMDA receptor antagonists, LY274614 and MK-801, and the nitric oxide synthase inhibitor, NG-nitro-l-arginine, attenuate analgesic tolerance to the muopioid morphine but not to kappa opioids. Pain 56, 69-74.

61. Rasmussen, K, Fuller, R. W., Stockton, M. E., Perry, K. W., Swinford, R. M., and Ornstein, P. L. (1991b) NMDA receptor antagonists suppress behaviors but not norepinephrine turnover or locus coeruleus unit activity induced by opiate withdrawal. Eur. J. Pharmacol. 117, 9-16.

62. Popik, P. and Danysz, W. (1997) Inhibition of reinforcing effects of morphine and motivational aspects of naloxone-precipitated opioid withdrawal by N-methyl-d-aspartate receptor antagonist, memantine. J. Pharmacol. Exp. Ther. 80, 854-865.

63. Popik, P., Mamczarz, J., Fraczek, M., Widla, M., Hesselink, M., and Danysz, W. (1998) Inhibition of reinforcing effects of morphine and naloxone-precipitated opioid withdrawal by novel glycine site and uncompetitive NMDA receptor antagonists. Neuropharmacology 37,1033-1042.

64. Wong, B. Y., Coulter, D. A., Choi, D. W., and Prince, D. A. (1988) Dextrophan and dextromethorphan, common antiussives, are antiepileptic and antagonize N-methyl-d-aspartate in brain slices. Neurosci. Lett. 85, 261-266.

65. Franklin, P. H., and Murray, T. F. (1992) High affinity [3H]dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-d-aspartate receptor-cation channel. Mol. Pharmacol. 41, 134.

66. Koyuncouglu, H., Gungor, M., Sagduyu, H., and Aricioglu, F. (1990) Suppression by ketamine and dextromoethorphan of precipitated abstinence syndrome in rats. Pharmacol. Biochem. Behav. 35, 829.

67. Farzin, D. (1999) Modification of naloxone-induced withdrawal signs by dextromethorphan in morphine-dependent mice. Eur. J. Pharmacol. 377, 35-42.

68. Koyuncouglu, H. and Saydam, B. (1990) The treatment of heroin addicts with dextromethorphan: a double-blind comparison of dextromethorphan with chlorpromazine. Int. J. Clin. Pharmacol. Ther. Toxicol. 28, 147.

69. Rosen, M. I., McMahon, T. J., Woods, S. W., Pearsall H. R., and Kosten, T. R. (1996) A pilot study of dextromethorphan in naloxone-precipitated opiate withdrawal. Eur. J. Pharmacol. 307, 251-257.

70. Cornish, J. W., Herman, B. H., Ehrman, R. N., Robbins, S. J., Childress, A. R., Bead, V., et al. (2001) A randomized, double-blind, placebo-controlled safety study of high-dose dextromethorphan in methadone-maintained male inpatients. Drug Alcohol Depend., 61, 183-189.

71. Curran, T., Abate, C., Cohen, D. R., Macgregor, P. F., Rauscher, F. J. 3d, Sonnenberg, J. L., et al. (1990) Inducible proto-oncogene transcription factors: third messengers in the brain. Cold Spring Harb. Syml. Quant. Biol. 55, 225-234.

72. Morgan, J. I. and Curran, T. (1991) Stimulus-transcription coupling in the nervous system: involvement of the inducible proto-oncogenes fos and jun. Annu. Rev. Neurosci. 14, 421-451.

73. Sheng, M. and Greenberg, M. E. (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4, 477-485.

74. Sonnenberg, J. L., Macgregor-Leon, P. F., Curran, T., and Morgan, J. I. (1989) Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron, 3, 359-365.

75. Hayward, M. D, Duman, R. S., and Nestler, E. J. (1990): Induction of the c-fos proto-oncogene during opiate withdrawal in the locus coeruleus and other regions of rat brain. Brain Res. 525, 256-266.

76. Stornetta, R. L., Norton, F. E., and Guyenet, P. G. (1993) Autonomic areas of rat brain exhibit increased Fos-like immunoreactivity during opiate withdrawal in rats. Brain Res. 624, 19-28.

77. Chahl, L. A., Leah, J., Herdegen, T., Trueman, L., and Lynch-Frame, A. M. (1996) Distribution of c-Fos in guinea-pig brain following morphine withdrawal. Brain Res. 717,127-134.

78. Rasmussen, K., Brodsky, M., and Inturrisi, C. E. (1995) NMDA antagonists and clonidine block c-fos expression during morphine withdrawal. Synapse 20, 68-74.

79. Monaghan, D. T. and Cotman, C. W. (1985) Distribution of N-methyl-d-aspartate-sensitive l-[3H]glutamate-binding sites in rat brain. J. Neurosci. 5, 2909-2919.

80. Higgins, G. A., Nguyen, P., and Sellers, E. M. (1992) The NMDA antagonist dizocilpine (MK801) attenuates motivational as well as somatic aspects of naloxone precipitated opioid withdrawal. Life Sci. 50, PL167-PL172.

81. Kosten, T. A. (1994) Clonidine attenuates conditioned aversion produced by naloxone-precipitated opiate withdrawal. Eur. J. Pharm. 254, 59-63.

82. Kest, K., McLemore, G., Kao, B., and Inturrisi, C. E. (1997) The competitive a-amino-3-hydroxy-5-methylisoxazole-4-propoinate receptor antagonist LY293558 attenuates and reverses analgesic tolerance to morphine but not to delta or kappa opioids. J. Pharmacol. Exp. Ther. 283, 1249-1255.

83. McLemore, G. L., Kest, B., and Inturrisi, C. E. (1997) The effects of LY293558, an AMPA receptor antagonist, on acute and chronic morphine dependence. Brain Res. 778,120-126.

84. Carlezon, W. A., Rasmussen, K., and Nestler, E. J. (1999) AMPA antagonist LY293558 blocks the development, without blocking the expression, of behavioral sensitization to morphine. Synapse 31, 256-262.

85. Rasmussen, K. (1995) The role of the locus coeruleus and ALmethyl-d-aspartic acid (NMDA) and AMPA receptors in opiate withdrawal. Neuropsychopharmacology 13, 295-300.

86. Rasmussen, K., Kendrick, W. T., Kogan, J. H., and Aghajanian, G. K., (1996) A selective AMPA antagonist, LY293558, antagonizes morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropsychopharmacology 15, 497-505.

87. Taylor, J. R., Punch, L. J, and Elsworth, J. D. (1998) A comparison of the effects of clonidine and CNQX infusion into the locus coeruleus and the amygdala on naloxone-precipitated opiate withdrawal in the rat. Psychopharmacology 138, 133-142.

88. Monaghan, D. T., Yao, D., and Cotman, C. W. (1984) Distribution of [3H] AMPA binding sites in rat brain as determined by quantitative autoradiography. Brain Res. 324, 160-164.

89. Young, A. B. and Fagg, G. E. (1990) Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharm. Sci. 11,126-133.

90. Davis, M. (1992) The role of the amygdala in fear and anxiety. Annu. Rev. Neurosci. 15, 353-373.

91. Vizi, E. S., Mike, A., and Tarnawa, I. (1996) 2,3-Benzodiazepines (GYKI 52466 and analogs): negative allosteric modulators of AMPA receptors. CNS Drug Rev. 2, 91-126.

92. Bleakman, D., Ballyk, B. A., Schoepp, D. D., Palmer, A. J., Bath, C. P, Sharpe, E. F., et al. (1996) Activity of 2,3-benzodi-azepines at native rat and recombinant human glutamate receptors in vitro: stereospecificity and selectivity profiles. Neuropharmacology 35, 1689-1702.

93. Bortolotto, Z. A., Clarke, V. R., Delany, C. M., Parry, M. C., Smolders, I., Vignes, M., et al. (1999) Kainate receptors are involved in synaptic plasticity. Nature 402, 297-301.

94. Rasmussen, K. and Vandergriff, J. L. (1997) The selective AMPA antagonist LY300168 suppresses morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal, Soc. Neurosci. Abstr. 23,1201.

95. Simmons, R. A., Li, D. L., Hoo, K. H., Deverill, M., Ornstein, P. L., and Iyengar, S. (1998) Kainate GluR5 receptor subtype mediates the nociceptive response to formalin in the rat. Neuropharmacology 37, 25-36.

96. Fundytus, M. E. and Coderre, T. J. (1994) Effect of activity at metabotropic, as well as ionotropic (NMDA), glutamate receptors on morphine dependence. Br. J. Pharmacol. 113, 1215-1220.

97. Fundytus, M. E., Ritchie, J., and Coderre, T. J. (1997) Attenuation of morphine withdrawal symptoms by subtype-selective metabotropic glutamate receptor antagonists. Br. J. Pharmacol. 120, 1015-1020.

98. Fundytus, M. E. and Coderre, T. J. (1999) Opioid tolerance and dependence: a new model highlighting the role of metabotropic glutamate receptors. Pain Forum 8, 3-13.

99. Popik, P., Kozela, E., and Pilc, A. (2000) Selective agonist of group II glutamate metabotropic receptors, LY354740, inhibits tolerance to analgesic effects of morphine in mice. Br. J. Pharmacol. 130,1425-1431.

100. Klodzinska, A., Chojnacka, W. E., Palucha, A., Branski, P., Popik, P., and Pilc, A. (1999) Potential anti-anxiety and anti-addictive effects of LY354740. A selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 38, 1831-1839.

101. Vandergriff, J. and Rasmussen, K. (1999) The selective mGlu2/3 receptor agonist LY354740 attenuates morphine-withdrawal-induced activation of locus coeruleus neurons and behavioral signs of morphine withdrawal. Neuropharmacology 38, 217-222.

102. Dube, G. R. and Marshall, K. C. (1997) Modulation of excitatory synaptic transmission in locus coeruleus by multiple presynaptic metabotropic glutamate receptors. Neuroscience 80, 511-521.

103. Battaglia, G., Monn, J. A., and Schoepp, D. D. (1997) In vivo inhibition of veratridine-evoked release of striatal excitatory amino acids by the group II metabotropic glutamate receptor agonist LY354740 in rats. Neurosci. Lett. 229,161-164.

104. Salt, T. E. and Eaton, S. A. (1995) Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on gabaergic terminals: pharmacological evidence using novel alpha-methyl derivative mGluR antagonists. MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65, 5-13.

105. Schaffhauser, H., Cartmell, J., Jakob-Rotne, R., and Mutel, V. (1997) Pharmacological characterization of metabotropic glutamate receptors linked to the inhibition of adenylate cyclase activity in rat striatal slices. Neuropharmacology 36, 933-940.

106. Nestler, E. J. (1996) Under siege: the brain on opiates. Neuron 16, 897-900.

107. Nestler, E. J. and Aghajanian, G. K. (1997) Molecular and cellular basis of addiction. Science 278, 58-63.

108. Ivanov, A. and Aston-Jones, G. (2001) Local opiate withdrawal in locus coeruleus neurons in vitro. J. Neurophysiol. 85, 2388-2397.

109. Lane-Ladd, S. B., Pineda, J., Boundy, V. A., Pfeuffer, T., Krupinski, J., Aghajanian, G. K., et al. (1997) CREB (cAMP response element-binding protein) in the locus coeruleus: biochemical, physiological, and behavioral evidence for a role in opiate dependence. J. Neurosci. 17, 7890-7901.

110. Punch, L. J., Self, D. W., Nestler, E. J., and Taylor J. R. (1997) Opposite modulation of opiate withdrawal behaviors on microinfusion of a protein kinase A inhibitor versus activator into the locus coeruleus or periaqueductal gray. J. Neurosci. 17, 8520-8527.

111. Petralia, R. S., Wang, Y. X., Niedzielski, A. S., and Wenthold, R. J. (1995) The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations. Neuroscience 71, 949-976.

112. Schoepp, D. D., Johnson, B. G., Wright, R. A., Salhoff, C. R., Mayne, N. G., Wu, S., et al. (1997) Ly354740 is a potent and highly selective group II metabotropic glutamate receptor agonist in cells expressing human glutamate receptors. Neuropharmacology 36, 1-11.

113. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. (1993a) Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335, 252-266.

114. Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N. (1993b) Distribution of the mRNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat. Neuroscience 53, 1009-1018.

Was this article helpful?

0 0
How To Win Your War Against Anxiety Disorders

How To Win Your War Against Anxiety Disorders

Tips And Tricks For Relieving Anxiety... Fast Everyone feels anxious sometimes. Whether work is getting to us or we're simply having hard time managing all that we have to do, we can feel overwhelmed and worried that we might not be able to manage it all. When these feelings hit, we don't have to suffer. By taking some simple steps, you can begin to create a calmer attitude, one that not only helps you feel better, but one that allows you the chance to make better decisions about what you need to do next.

Get My Free Ebook


Post a comment