1. Sulzer, D., Chen, T.-K., Lau, Y. Y., Kristensen, H., Rayport, S., and Ewing, A. (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15, 4102-4108.

2. Sulzer, D. and Rayport, S. (1990) Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 5, 797-808.

3. Pijnenberg, A. J. J., Honig, W. M. M., van der Heyden, J. A. M., and van Rossum, J. M. (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur. J. Pharmacol. 35, 45-58.

4. Vezina, P. and Stewart, J. (1990) Amphetamine administered to the ventral tegmental area but not to the nucleus accumbens sensitizes rats to systemic morphine: lack of conditioned effects. Brain Res. 516, 99-106.

5. Roberts, D. C. S., Zis, A. P., and Fibiger, H. C. (1975) Ascending catecholaminergic pathways and amphetamine induced locomotion: Importance of dopamine and apparent non-involvement of norepinephrine. Brain Res. 93, 441-445.

6. Kelly, P. H. and Iversen, S. D. (1976) Selective 6-OHDA-induced destruction of mesolimbic dopamine neurons: abolition of psychostimulant induced locomotor activity in rats. Eur. J. Pharamacol. 40, 45-56.

7. Joyce, E. M. and Koob, G. F. (1981) Amphetamine-, scopolamine- and caffeine-induced locomotor activity following 6-hydroxydopamine lesions of the mesolimbic dopamine system. Psychopharmacology 73, 311-313.

8. Dougherty, G. G., Jr. and Ellinwood, E. H., Jr. (1981) Chronic ¿-amphetamine in nucleus accumbens: lack of tolerance or reverse tolerance of locomotor activity. Life Sci. 28, 2295-2298.

9. Kalivas, P. W. and Weber, B. (1988) Amphetamine injected into the ventral mesencephalon sensitizes rats to peripheral amphetamine and cocaine. J. Pharmacol. Exp. Ther. 245, 1095-1102.

10. Hooks, M. S., Jones, G. H., Liem, B. J., and Justice, J. B., Jr. (1992) Sensitization and individual differences to intraperi-toneal amphetamine, cocaine or caffeine following repeated intracranial amphetamine infusions. Pharmacol. Biochem. Behav. 43, 815-823.

11. Perugini, M. and Vezina, P. (1994) Amphetamine administered to the ventral tegmental area sensitizes rats to the locomotor effects of nucleus accumbens amphetamine. J. Pharmacol. Exp. Ther. 270, 690-696.

12. Cador, M., Bjijou, Y., and Stinus, L. (1995) Evidence of a complete independence of the neurobiological substrates of the induction and expression of behavioral sensitization to amphetamine. Neuroscience 65, 385-395.

13. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. II. Dopamine perikarya. J. Neurosci. 13, 276-284.

14. Stewart, J. and Vezina, P. (1989) Microinjections of SCH-23390 into the ventral tegmental area and substantia nigra pars reticulata attenuate the development of sensitization to the locomotor effects of systemic amphetamine. Brain Res. 495, 401-406.

15. Vezina, P. and Queen, A. L. (2000) Induction of locomotor sensitization by amphetamine requires the activation of NMDA receptors in the rat ventral tegmental area. Psychopharmacology 151,184—191.

16. Kim, J. H. and Vezina, P. (1998) Metabotropic glutamate receptors are necessary for sensitization by amphetamine. NeuroReport 9, 403-406.

17. Bjijou, Y., Stinus, L., Le Moal, M., and Cador, M. (1996) Evidence for selective involvement of dopamine D1 receptors in the ventral tegmental area in the behavioral sensitization induced by intraventral tegmental area injections of ¿-amphetamine. J. Pharmacol. Exp. Ther. 277,1177-1187.

18. Vezina, P. (1996) D1 dopamine receptor activation is necessary for the induction of sensitization by amphetamine in the ventral tegmental area. J. Neurosci. 16, 2411-2420.

19. Beitner-Johnson, D. and Nestler, E. J. (1991) Morphine and cocaine exert common chronic actions on tyrosine hydroxylase in dopaminergic brain reward regions. J. Neurochem. 57, 344—347.

20. Sorg, B. A., Shiouh-yi, C., and Kalivas, P. W. (1993) Time course of tyrosine hydroxylase expression following behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 266, 424-430.

21. Nestler, E. J., Terwilliger, R. Z., Walker, J. R., Sevarino, K. A., and Duman, R. S. (1990) Chronic cocaine treatment decreases levels of the G protein subunits Gia and Ga in discrete regions of rat brain. J. Neurochem. 55, 1079-1082.

22. Henry, D. J., Greene, M. A., and White, F. J. (1989) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: repeated administration. J. Pharmacol. Exp. Ther. 251, 833-839.

23. Wolf, M. E., White, F. J., Nassar, R., Brooderson, R. J., and Khansa, M. R. (1993) Differential development of autore-ceptor subsensitivity and enhanced dopamine release during amphetamine sensitization. J. Pharmacol. Exp. Ther. 264, 249-255.

24. Robinson, T. E. (1988) Stimulant drugs and stress: factors influencing individual differences in the susceptibility to sensitization, in Sensitization in the Nervous System (Kalivas, P. W. and Branes, C. D., eds.), Telford, Caldwell, NJ, pp. 145-173.

25. Hamamura, T., Akiyama, K., Akimoto, K., Kashihara, K., Okumura, K., Ujike, H., et al. (1991) Co-administration of either a selective D1 or D2 dopamine antagonist with methamphetamine prevents methamphetamine-induced behavioral sensiti-zation and neurochemical change, studied by in vivo intracerebral dialysis. Brain Res. 546, 40-46.

26. Robinson, T. E. (1991) The neurobiology of amphetamine psychosis: evidence from studies with an animal model, in Biological Basis of Schizophrenia (Nakazawa, T., ed.), Japan Scientific Societies, Tokyo.

27. Segal, D. S. and Kuczenski, R. (1992) In vivo microdialysis reveals a diminished amphetamine-induced DA response corresponding to behavioral sensitization produced by repeated amphetamine pretreatment. Brain Res. 571, 330-337.

28. Kalivas, P. W. and Duffy, P. (1993) Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13, 266-275.

29. Paulson, P. E. and Robinson, T. E. (1995) Amphetamine-induced time-dependent sensitization of dopamine neurotransmission in the dorsal and ventral striatum: a microdialysis study in behaving rats. Synapse 19, 56-65.

30. Kuczenski, R., Segal, D., and Todd, P. K. (1997) Behavioral sensitization and extracellular dopamine responses to amphetamine after various treatments. Psychopharmacology 134, 221-229.

31. Vezina, P. (1993) Amphetamine injected into the ventral tegmental area sensitizes the nucleus accumbens dopaminergic response to systemic amphetamine: an in vivo microdialysis study in the rat. Brain Res. 605, 332-337.

32. Wolf, M. E., White, F. J., and Hu, X.-T. (1994) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci. 14, 1735-1745.

33. Hu, X.-T., Koeltzow, T. E., Cooper, D. C., Robertson, G. S., White, F. J., and Vezina, P (2002). Repeated ventral tegmental area amphetamine administration alters D1 dopamine receptor signaling in the nucleus accumbens. Synapse, in press.

34. Christie, M. J., Summers, R. J., Stephenson, J. A., Cook, C. J., and Beart, P. M. (1987) Excitatory amino acid projections to the nucleus accumbens septi in the rat: a retrograde transport study utilizing D[3H]aspartate and [3H]GABA. Neuroscience 22, 425-439.

35. Meredith, G. E., Pennartz, C. M., and Groenewegen, H. J. (1993) The cellular framework for chemical signalling in the nucleus accumbens. [review] Prog. Brain Res. 99, 3-24.

36. Sesack, S. R. and Pickel, V. M. (1990) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apppositon to each other. Brain Res. 527, 266-279.

37. Sesack, S. R. and Pickel, V. M. (1992) Prefrontal cortical efferents in ther rat synapse on unlabeled neuronal targets of cat-echolamine terminals in the nuclues accumbens septi and on dopamine neurons in the ventral tegmental area. J. Comp. Neurol. 320, 145-160.

38. Mogenson, G. J., Brudzynski, S. M., Wu, M., Yang, C. R., and Yim, C. C. Y. (1993) From motivation to action: a review of dopaminergic regulation of limbic - nucleus accumbens - ventral pallidum - pedunculopontine nucleus circuitries involved in limbic-motor integration, in Limbic Motor Circuits and Neuropsychiatry (Kalivas. P. W. and Barnes, C. D., eds), CRC, Boca Raton, FL, pp. 193-236.

39. Freed, W. J. (1994) Glutamatergic mechanisms mediating stimulant and antipsychotic drug effects. Neurosci. Biobehav. Rev. 18, 111-120.

40. Schmidt, W. J. and Kretschmer, B. D. (1997) Behavioural pharmacology of glutamate receptors in the basal ganglia. Neu-rosci. Biobehav. Rev. 21, 381-392.

41. Vezina, P. and Kim, J.-H. (1999) Metabotropic glutamate receptors and the generation of locomotor activity: interactions with midbrain dopamine. Neurosci. Biobehav. Rev. 23, 577-589.

42. Phillipson, O. (1979) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J. Comp. Neurol. 187, 117-144.

43. Christie, M. J., Bridge, S., James, L. B., and Beart, P. M. (1985) Excitotoxin lesions suggest an aspartatergic projection from rat medial prefrontal cortex to ventral tegmental area. Brain Res. 333, 169-172.

44. Sesack, S. R., Deutch, A. Y., Roth, R. H., and Bunney, B. S. (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J. Comp. Neurol. 290, 213-242.

45. Cornwall, J., Cooper, J. D., and Phillipson, O. T. (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 25, 271-284.

46. Kalivas, P. W. (1993) Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res. Rev. 18, 75-113.

47. Oakman, S. A., Faris, P. L., Kerr, P. E., Cozzari, C., and Harman, B. K. (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J. Neu-rosci. 15, 5859-5869.

48. Smith, Y., Charara, A., and Parent, A. (1996) Glutamatergic inputs from the pedunculopontine nucleus of midbrain dopaminergic neurons in primates: phaseolus vulgaris-leucoagglutinun anterode labeling combined with postembedding glutamate and GABA immunohistochemistry.J.Comp. Neurol. 364, 254-266.

49. Mercuri, N. B., Stratta, F., Calabresi, P., and Bernardi, G. (1992) Electrophysiological evidence for the presence of ionotropic and metabotropic excitatory amino acid receptors on dopaminergic neurons of the rat mesencephalon. Funct. Neurol. 7, 231-234.

50. Gariano, R. F. and Groves, P. M. (1988) Burst firing induced in mid-brain dopamine neurons by stimulation of the medial prefrontal and anterior cingulate cortices. Brain Res.462, 194-198.

51. Suaud-Chagny, M. F., Chergui, K., Chouvet, G., and Gonon, J. (1992) Relationship between dopamine release in the rat nucleus accumbens and the discharge activity of dopaminergic neurons during local in vivo application of amino acids in the ventral tegmental area. Neuroscience, 49, 63-72.

52. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F. G., and Svensson, T. H. (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neurosci. Lett. 157, 53-56.

53. Karreman, M. and Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic stria-tum: an effect mediated by ventral tegmental area. J. Neurochem. 66, 589-598.

54. Karreman, M., Westerink, B. H. C., and Moghaddam, B. (1996) Excitatory amino acid receptors in the ventral tegmental area regulate dopamine release in the ventral striatum. J. Neurochem. 67, 601-607.

55. Pycock, C. J. and Dawbarn, D. (1980) Acute motor effects of N-methyl-d-aspartic acid and kainic acid applied focally to mesencephalic dopamine cell body regions in the rat. Neurosci. Lett. 18, 85-90.

56. Kalivas, P. W., Duffy, P., and Barrow, J. (1989) Regulation of the mesocoticolimbic dopamiine system by glutamic acid receptor subtypes. J. Pharmacol. Exp. Ther. 251, 378-387.

57. Schenk, S. and Partridge, B. (1997) Sensitization and tolerance in psychostimulant self-administration. Pharmacol. Biochem. Behav. 57, 543-550.

58. Swanson, C. J. and Kalivas, P. W. (2000) Regulation of locomotor activity by metabotropic glutamate receptors in the nucleus accumbens and ventral tegmental area. J. Pharmacol. Exp. Ther. 292, 406-414.

59. Zhang, X. F., Hu, X. T., White, F. J., and Wolf, M. E. (1997) Increased responsiveness of ventral tegmental area dopamine neurons to glutamate after repeated administration of cocaine or amphetamine is transient and selectively involves AMPA receptors. J. Pharmacol. Exp. Ther. 281, 699-706.

60. Wolf, M. E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neuro-biol. 54, 679-720.

61. Karler, R., Calder, L. D., and Turkanis, S. A. (1991) DNQX blockade of amphetamine behavioral sensitization. Brain Res. 552, 295-300.

62. Stewart, J. and Druhan, J. P. (1993) Development of both conditioning and sensitization of the behavioral activating effects of amphetamine is blocked by the noncompetitive NMDA receptor antagonist, MK-801. Psychopharmacology 110, 125-132.

63. Wolf, M. E., Drahlin, S. L., Hu, X. T., Xue, C. J., and White, K. (1995) Effects of lesions of prefrontal cortex, amygdala, or fornix on behavioral sensitization to amphetamine: Comparison with N-methyl-d-aspartate antagonists. Neuroscience 69, 417-439.

64. Li, Y., Vartanian, A. J., White, F. J., Xue, C. J., and Wolf, M. E. (1997) Effects of the AMPA receptor antagonist NBQX on the development and expression of behavioral sensitization to cocaine and amphetamine. Psychopharmacology 134, 266-276.

65. Kalivas, P. W. and Alesdatter, J. E. (1993) Involvement of NMDA receptor stimulation in the VTA and amygdala in behavioral sensitization to cocaine. J. Pharmacol. Exp. Ther. 267, 486-495.

66. Cador, M., Bjijou, Y., Cailhol, S., and Stinus, L. (1999) ¿-Amphetamine-induced behavioral sensitization: implications of a glutamatergic medial prefrontal cortex-ventral tegmental area innervation. Neuroscience 94, 705-721.

67. Kalivas, P. W. and Duffy, P. (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J. Neurosci. 15, 5379-5388.

68. Wolf, M. E. and Xue, C.-J. (1998) Amphetamine and D1 dopamine receptor agonists produce biphasic effects on glutamate efflux in rat ventral tegmental area: modification by repeated amphetamine administration. J. Neurochem. 70, 198-209.

69. Wang, T. and French, E. D. (1993) Electrophysiological evidence for the existence of NMDA and non-NMDA receptors on rat ventral tegmental dopamine neurons. Synapse 13, 270-277.

70. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., and Nestler, E. J. (1996) Drugs of abuse and stress increase the expression of GluRl and NMDARl glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274-282.

71. White F. J., Hu, X.-T., Henry, D. J., and Zhang, X.-F. (1995) Repeated administration of cocaine or amphetamine alters neuronal responses to glutamate in the mesoaccumbens dopamine system. J. Pharmacol. Exp. Ther. 273, 445-454.

72. Li, Y., Hu, X.-T., Berney, T. G., Vartanian, A. J., Stine, C. D., Wolf, M. E., et al. (1999) Both glutamate receptor antagonists and prefrontal cortex lesions prevent induction of cocaine sensitization and associated neuroadaptations. Synapse 34, 169-180.

73. Pierce, R. C., Reeder, D. C., Hicks, J., Morgan, Z. R., and Kalivas, P. W. (1998) Ibotenic acid lesions of the dorsal prefrontal cortex disrupt the expression of behavioral sensitization to cocaine. Neuroscience 82,1103-1114.

74. Li, Y. and Wolf, M. E. (1997) Ibotenic acid lesions of prefrontal cortex do not prevent expression of behavioral sensitization to amphetamine. Behav. Brain Res. 84, 285-289.

75. Kalivas, P. W. and Duffy, P. (1998) Repeated cocaine administration alters D-l dopamine receptor regulation of extracellular glutamate levels in the ventral tegmental area. J. Neurochem. 70,1497-1502.

76. Xue, C. J., Ng, J. P., Li, Y., and Wolf, M. E. (1996) Acute and repeated systemic amphetamine administration: effects on extracellular glutamate, aspartate, and serine levels in rat ventral tegmental area and nucleus accumbens. J. Neurochem. 67, 352-363.

77. Bonci, A. and Williams, J. T. (1996) A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron 16, 631-639.

78. Martin, L. J., Blackstone, C. D., Huganir, R. L, and Price, L. (1992) Cellular localization of a metabotropic glutamate receptor in rat brain. Neuron 9, 259-270.

79. Aniksztejn, L., Otani, S., and Ben-Ari, Y. (1992) Quisqualate metabotropic receptors modulate NMDA currents and facilitate induction of long-term potentiation through protein kinase C. Eur. J. Neurosci. 4, 500-505.

80. Glaum, S. R. and Miller, R. J. (1993) Activation of metabotropic glutamate receptors produces reciprocal regulation of ionotropic glutamate and GABA responses in the nucleus of the tractus solitarius of the rat. J. Neurosci. 13, 1636-1641.

81. Colwell, C. S. and Levine, M. S. (1994) Metabotropic glutamate receptors modulate NMDA receptor function in neostriatal neurons. Neuroscience 61, 497-507.

82. Fiorillo, C. D. and Williams, J. T. (1998) Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78-82.

83. Paladini, C. A., Fiorillo, C. D., Morikawa, H., and Williams, J. T. (2001) Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons. Nature Neurosci. 4, 275-281.

84. Fiorillo, C. D. and Williams, J. T. (2000) Selective inhibition by adenosine of mGluR IPSPs in dopamine neurons after cocaine treatment. J. Neurophysiol. 83,1307-1314.

85. Bonci, A., Grillner, P., Siniscalchi, A., Mercuri, N. B., and Bernardi, G. (1997) Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur. J. Neurosci. 9, 2359-2369.

86. Wigmore, M. A. and Lacey, M. G. (1998) Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurons in vitro. Br. J. Pharmacol. 123, 667-674.

87. Wittmann, M., Marino, M. J., Bradley, S. R., and Conn, P. J. (2001) Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J. Neurophysiol. 85,1960-1968.

88. Manzoni, O. J. and Williams, J. T. (1999) Presynaptic regulation of glutamate release in the ventral tegmental area during morphine withdrawal. J. Neurosci. 19, 6629-6636.

89. Bell, K. and Kalivas, P. W. (1996) Context-specific cross-sensitization between systemic cocaine and intra-accumbens AMPA infusion in the rat. Psychopharmacology 127, 377-383.

90. Pierce, R. C., Bell, K., Duffy, P., and Kalivas, P. W. (1996) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci. 16, 1550-1560.

91. Reid, M. S. and Berger, S. P. (1996) Evidence for sensitization of cocaine-induced nucleus accumbens glutamate release. NeurOreport 7, 1325-1329.

92. Robinson, S. E., Kunko, P. M., Smith, J. A., Wallace, M. J., Mo, Q., and Maher, J. R. (1997) Extracellular aspartate concentration increases in nucleus accumbens after cocaine sensitization. Eur. J. Pharmacol. 319, 31-36.

93. Pierce, R. C., Duffy, P., and Kalivas, P. W. (1996) Changes in excitatory amino acid transmission in the nucleus accumbens associated with behavioral sensitization to cocaine during early withdrawal. Neurosci. 1, article #100 08.

94. Youngren, K. D., Daly, D. A., and Moghaddam, B. (1993) Distinct actions of endogenous excitatory amino acids on the outflow of dopamine in the nucleus accumbens. J. Pharmacol. Exp. Ther. 264, 289-293.

95. Smith, J. A., Mo, Q., Guo, H., Kunko, P. M., and Robinson, S. E. (1995) Cocaine increases extraneuronal levels of aspartate and glutamate in the nucleus accumbens. Brain Res. 683, 264-269.

96. Taber, M. T., Baker, G. B., and Fibiger, H. C. (1996) Glutamate receptor agonists decrease extracellular dopamine in the rat nucleus accumbens in vivo. Synapse 24, 165-172.

97. Kalivas, P. W. and Duffy, P. (1997) Dopamine regulation of extracellular glutamate in the nucleus accumbens. Brain Res. 761, 173-177.

98. Reid, M. S., Hsu, K., Jr., and Berger, S. P. (1997) Cocaine and amphetamine preferentially stimulate glutamate release in the limbic system: studies on the involvement of dopamine. Synapse 27, 95-105.

99. Segovia, G., Del Acro, A., and Mora, F. (1997) Endogenous glutamate increases extracellular concentrations of dopamine, GABA, and taurine through NMDA and AMPA/kainate receptors in striatum of the freely moving rat: a microdialysis study. J. Neurochem. 69, 1476-1483.

100. West, A. R. and Galloway, M. P. (1997) Inhibition of glutamate reuptake potentiates endogenous nitric oxide-facilitated dopamine efflux in the rat striatum: an in vivo microdialysis study. Neurosci. Lett. 230, 21-24.

101. Dalia, A., Uretsky, N. J., and Wallace, L. J. (1998) Dopaminergic agonists administered into the nucleus accumbens: effects on extracellular glutamate and on locomotor activity. Brain Res. 788,111-117.

102. Perugini, M. and Vezina, P. (1994) Lack of sensitization to the locomotor effects of direct D1 dopamine receptor agonists in rats having been pre-exposed to amphetamine. Soc. Neurosci. Abst. 20, 825.

103. Pierce, R. C. and Kalivas, P. W. (1995) Amphetamine produces sensitized increses in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine.J. Pharmacol. Exp. Ther. 275, 1019-1029.

104. Kim, J. H., Perugini, M., Austin, J. D., and Vezina, P. Previous exposure to amphetamine enhances the subsequent locomotor response to a D1 dopamine receptor agonist when glutamate reuptake is inhibited. J. Neurosci. 21, 1-6.

105. Kim, J. H. and Vezina, P. (1998) The metabotropic glutamate receptor antagonist (RS)-MCPC produces hyperlocomotion in amphetamine pre-exposed rats. Neuropharmacology 37, 189-197.

106. Manzoni, O. J., Michel, J.-M., and Bockaert, J. (1997) Metabotropic glutamate receptors in the rat nucleus accumbens. Eur. J. Neurosci. 9, 1514-1523.

107. Gaiardi, M., Bartoletti, M., Bacchi, A., Gubellini, C., Costa, M., and Babbini, M. (1991) Role of repeated exposure to morphine in determining its affective properties: place and taste conditioning studies in rats. Psychopharmacology 103, 183-186.

108. Lett, R. T. (1989) Repeated exposures intensify rather that diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychophramacology 98, 357-362.

109. Shippenberg, T. S. and Heidbreder, C. H. (1995) Sensitization to the conditioned rewarding effects of cocaine: pharmacological and temporal characteristics. J. Pharmacol. Exp. Ther. 273, 808-815.

110. Horger B. A., Shelton, K., and Schenk, S. (1990) Pre-exposure sensitizes rats to the rewarding effects of cocaine. Pharmacol. Biochem. Behav. 37, 707-711.

111. Horger, B. A., Giles, M. K., and Schenk, S. (1992) Preexposure to amphetamine and nicotine predisposes rats to self-administer a low dose of cocaine. Psycopharamacology 107, 271-276.

112. Piazza, P. V., Deminiere, J., Le Moal, M., and Simon, H. (1989) Factors that predict individual vulnerability to amphetamine self-administration. Science 245,1511-1513.

113. Piazza, P. V., Maccari, S. Deminiere, J.-M., Le Moal, M., Mormede, P., and Simon, H. (1991) Corticosterone levels determine individual vulnerability to amphetamine self-administration. Proc. Natl. Acad. Sci. USA 88, 2088-2092.

114. Pierre, P. J. and Vezina, P. (1997) Predisposition to self-administer amphetamine: the contribution of response to novelty and prior exposure to the drug. Psychopharmacology 129, 277-284.

115. Valadez, A., and Schenk, S. (1994) Persistence of the ability of amphetamine pre-exposure to facilitate acquistion of cocaine self-administration. Pharmacol. Biochem. Behav. 47, 203-205.

116. Woolverton, W. L., Cervo, L., and Johanson, C. E. (1984) Effects of repeated mehtamphetamine administration on metham-phetamine self-administration in rhesus monkeys. Pharmacol. Biochem. Behav. 21, 737-741.

117. Mendrek, A., Blaha, C., and Phillips, A. G. (1998) Pre-exposure to amphetamine sensitizes rats to its rewarding properties as measured by a progressive ratio schedule. Psychopharmacology 135, 416-422.

118. Lorrrain, D. S., Arnold, G. M., and Vezina, P. (2000) Previous exposure to amphetamine increases incentive to obtain the drug: Long-lasting effects revealed by the progressive ratio schedule. Behav. Brain Res. 107, 9-19.

119. Robinson T. E. and Berridge, K. C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev. 18, 247-291.

120. Shaham, Y. and Stewart, J. (1995) Stress reinstates heroin-seeking in drug-free animals: an effect mimicking heroin, not withdrawal. Psychopharmacology 119, 334-341.

121. Shaham, Y., Rajabi, H., and Stewart, J. (1996) Relapse to heroin-seeking under opioid maintenance: the effects of opioid withdrawal, heroin priming and stress. J. Neurosci. 16, 1957-1963.

122. Shaham, Y. and Stewart, J. (1996) Effects of opioid and dopamine receptor antagonists on relapse induced by stress and re-exposure to heroin in rats. Psychopharmacology 125, 385-391.

123. Stewart, J., deWit, H., and Eikelboom, R. (1984) The role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91, 251-268.

124. Stewart, J. and deWit, H. (1987) Reinstatement of drug-taking behavior as a method of assessing incentive motivational properties of drugs, in Methods of Assessing the Reinforcing Properties of Abused Drugs (Bozarth, M. A., ed.), SpringerVerlag, New York, pp. 211-227.

125. Koob, G. F. and Bloom, F. E. (1988) Cellular and molecular mechanisms of drug dependence. Science 242, 715-723.

126. Wise, R. A., and Bozarth, M. A. (1987) A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469-492.

127. Bozarth, M. and Wise, R. A. (1981) Heroin reward is dependent on a dopaminergic sustrate. Life Sci. 29,1881-1886.

128. Hoebel, B. G., Monaco, A. P., Hernandez, L., Aulisi, E. F., Stanley, B. G., and Lenard, L. (1983) Self-injection of amphetamine directly into the brain. Psychopharmacology 81, 158-163.

129. Pettit, H. O., Ettenberg, A., Bloom, F. E., and Koob, G. F. (1984) Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167-173.

130. Roberts, D. C. S., Koob, G. F., Klonoff, P. and Fibiger, H. C. (1980) Extinction and recovery of cocaine self-administration following 6-OHDA lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 12, 781-787.

131. Zito, K. A., Vickers, G., and Roberts, D. C. S. (1985) Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 23, 1029-1036.

132. Woolverton, W. L. and Virus, R. M. (1989) The effects of D1 and D2 dopamine antagonists on behavior maintained by cocaine or food. Pharmacol. Biochem. Behav. 32, 691-697.

133. Caine, S. B. and Koob, G. F. (1994) Effects of dopamine D1 and D2 antagonists on cocaine self-administration under different schedules of reinforcement in the rat. J. Pharmacol. Exp. Ther. 270, 209-218.

134. Clarke, P. B., Jakubovic, A., and Fibiger, H. C. (1988) Anatomical analysis of the involvement of mesolimbocortical dopamine in the locomotor stimulant actions of ¿-amphetamine and apomorphine. Psychopharmacology 96, 511-520.

135. McCreary, A. C. and Marsden, C. A. (1993) Dopamine D1 receptor antagonism by SCH-23390 prevents expression of conditioned sensitization following repeated administration of cocaine. Neuropharmacology 32, 387-391.

136. Meyer, M. E., Cottrell, G. A., Van Hartesveldt, C., and Potter, T. J. (1993) Effects of dopamine D1 antagonists SCH-23390 and SKF-83566 on locomotor activities in rats. Pharmacol. Biochem. Behav. 44, 429-432.

137. Vezina, P., Pierre, P. J., and Lorrain, D. S. (1999) The effect of previous exposure to amphetamine on drug-induced locomotion and self-administration of a low dose of the drug. Psychopharmacology 147, 125-134.

138. Dakis, C. A., and Gold, M. S. (1985) New concepts in cocaine addiction: the dopamine depletion hypothesis. Neurosci. Behav. Rev. 9, 469-77.

139. Hurd, Y. L., Weiss, F., Koob, G., and Ungerstedt, U. (1990) The influence of cocaine self-administration on in vivo dopamine and acetylcholine neurotransmission in rat caudateputamen. Neurosci. Lett. 109, 227-233.

140. Pettit, H. O. and Justice, J. B., Jr. (1989) Dopamine in the nucleus accumbens during cocaine self-administration as studied as by in vivo microdialysis. Pharmacol. Biochem. Behav. 34, 899-904.

141. Wise, R. A., Newton, P., Leeb, K., Burnette, B., Pocock, D., and Justice, J. B., Jr. (1995) Fluctuations in nucleus accumbens dopamine concentration during intravenous cocaine self-administration in rats. Psychopharmacology 120, 10-20.

142. De Wit, H. and Stewart, J. (1983) Drug reinstatement of heroin-reinforced responding in the rat. Psychopharmacology 79, 29-31.

143. Erb. S., Shaham, Y., and Stewart, J. (1996) Stress reinstates cocaine-seeking behavior after prolonged extinction and a drug-free period. Psychopharmacolog 128, 408-412.

144. Stewart, J. (1984) Reinstatement of heroin and cocaine self-administration behavior in the rat by intracerebral application of morphine in the ventral tegmental area. Pharmacol. Biochem. Behav. 20, 917-923.

145. Stewart, J. and Vezina, P. (1988) A comparison of the effects of intra-accumbens injections of amphetamine and morphine on reinstatement of heroin intravenous self-administration behavior. Brain Res. 457, 287-294.

146. Stewart, J. and Wise, R. A. (1992) Reinstatement of heroin self-administration habits: morphine prompts and naltrexone discourages renewed responding after extinction. Psychopharmacology 108, 79-84.

147. Hooks, M. S., Duffy, P., Striplin, C., and Kalivas, P. W. (1994) Behavioral and neurochemical sensitization following cocaine self-administration. Psychopharmacology 115, 265-272.

148. Phillips, A. G. and Di Ciano, P. (1996) Behavioral sensitization is induced by intravenous self-administration of cocaine by rats. Psychopharmacology 124, 279-281.

149. Vezina, P., Lorrain, D. S., Arnold, G. M., Austin, J. D., and Suto, N. (2002) Sensitization of midbrain dopamine neuron reactivity promotes the pursuit of amphetamine. J. Neurosci., in press.

150. Neisewander, J. L., O'Dell, L. E., Tran-Nguyen, T. L., Castaneda, E., and Fuchs, R. A. (1996) Dopamine overflow in the nucleus accumbens during extinction and reinstatement of cocaine self-administration behavior. Neuropsychopharmacol-ogy 15, 506-14.

151. Suto, N., Austin, J. D., Kramer, M. K., Tanabe, L. M., and Vezina, P. (2000) Previous exposure to amphetamine in the VTA leads to excessive cocaine self-administration in a D1 DA receptor dependent manner. Soc. Neurosci. Abst. 26, 793.

152. Pierre, P. J., and Vezina, P. (1998) D1 dopamine receptor blockade prevents the facilitation of amphetamine self-administration induced by prior exposure to the drug. Psychopharmacology 138,159-166.

153. Suto, N, Austin, J. D., Tanabe, L. M., and Vezina, P. (2001) Previous exposure to VTA amphetamine promotes the self-administration of cocaine: D1 dopamine and NMDA glutamate receptor dependence. Drug and Alcohol Dependence 63, 631.

154. Suto, N., Austin, J. D., Tanabe, L. M., Svoboda, R. A., and Vezina, P. (2001) VTA amphetamine pre-exposure facilitates cocaine self-administration: glutamate receptor dependence. Soc. Neurosci. Abst., 27, 979.3.

155. Schenk, S., Valadez, A., McNamara, C., House, D. T., Higley, D., Bankson, M. S., et al. (1993) Development and expression of sensitization to cocaine's reinforcing properties: role of NMDA receptors. Psychopharmacology 111, 332-338.

156. Cornish, J. L., Duffy, P., and Kalivas, P. W. (1999) A role for nucleus accumbens glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93,1359-1367.

157. Cornish, J. L., and Kalivas, P. W. (2000) Glutamate transmission in the nucleus accumbens mediates relapse in cocaine addiction. J. Neurosci. 20, 1-5.

158. Vezina, P., Suto, N., Austin, J. D., Tanabe, L. M., and Creekmore, E. (2001) Previous exposure to amphetamine enhances cocaine self-administration as well as its reinstatement by nucleus accumbens AMPA. Soc. Neurosci. Abst. 27, 979.17.

Natural Detox

Natural Detox

Are you looking for a full total body detox? If so, then you might want to try a 10 day detox or some refer to it as the 2-week detox. A 10-day detox is a full body detox that usually means taking several different steps to reach your total body transformation. It might involve a change in diet, exercise and more.

Get My Free Ebook

Post a comment