References

1. Rose NR, Bona C. Defining criteria for autoimmune diseases (Witebsky's postulates revisited). Immunol Today 1993; 14:426-430.

2. Sestak AL, Shaver TS, Moser KL, Neas BR, Harley JB. Familial aggregation of lupus and autoimmunity in an unusual multiplex pedigree. J Rheum l999; 26:1495-1499.

3. Kerzin-Storrar L, Metcalf RA, Dyer PA, Kowalska G, Ferguson I, Harris A. Genetic factors in myasthenia gravis: a family study. Neurology 1988; 38:38-42.

4. De Keyser J. Autoimmunity in multiple sclerosis. Neurology 1988; 38:371-374.

5. Wynn DR, Codd MB, Kurland LT, Rodriguez M. Multiple sclerosis: a population-based investigation of the association with possible autoimmune diseases or diabetes mellitus [abstr]. Neurology 1987; 37(suppl 1):272.

6. Somer H, Muller K, Kinnunen E. Myasthenia gravis associated with multiple sclerosis. Epidemiological survey and immunological findings. J Neurol Sci 1989; 89:37-48.

7. Aita JF, Snyder DH, Reichl W. Myasthenia gravis and multiple sclerosis: an unusual combination of diseases. Neurology 1974; 24:72-75.

8. Gay FW, Drye TJ, Dick WA, Esiri MM. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis: identification and characterization of the primary demyelinating lesions. Brain 1997; 120:1461-1483.

9. Lucchinetti C, Bruck W, Rodriguez M, Lassman H. Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol 1996; 6:259-274.

10. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mork S, Bo L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338(5):278-285.

11. Traugott U, Remherz EL, Raine CS. Multiple sclerosis: distribution of T-cell, T cell subsets and la-positive macrophages in lesions of different ages. J Neuroimmunol 1983; 4(3):201-221.

12. Washington R, Burton BS, Todd RF, Newman W, Dragovic L, Dore-Duffy P. Expression of immunologically relevant endothelial cell activation antigens on isolated central nervous system microvessels from patient with multiple sclerosis. Ann Neural 1994; 35:89-97.

13. Traugott U, Scheinberg LC, Raine CS. On the presence of la-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuroimmunol 1985; 8:1-14.

14. Ransohoff RM, Estes ML. Astrocyte expression of major histocompatibility complex gene products in multiple sclerosis brain tissue obtained by stereotactic biopsy. Arch Neural 1991; 48:1244-1246.

15. Lee SC, Moore GRW, Golenwsky G, Raine CS. Multiple sclerosis: a role for astroglia in active demyelination suggested by class II MHC expression and ultrastructural study. J Neuropath Exp Neurol 1990; 49(2):122-136.

16. Rosenberg GA. Matrix metalloproteinases and neuroinflammation in multiple sclerosis. Neuroscientist 2002; 8:586-595.

17. Gijbels K, Galardy RE, Steinman L. Reversal of experimental autoimmune encephalo-myelitis with a hydroxamate inhibitor of matrix metalloproteases. J Clin Invest 1994; 94:2177-2182.

18. Lindberg RL, De Groot CJ, Montagne L, et al. The expression profile of matrix metal-loproteinases (MMPs) and their inhibitors (TIMPs) in lesions and normal appearing white matter of multiple sclerosis. Brain 2001; 124(Pt 9):1743-1753.

19. Maeda A, Sobel R. Matrix metalloproteinases in normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropath Exp Neurol 1996; 55:300-309.

Vos CM, van Haastert ES, de Groot CJ, van der Valk P, de Vries HE. Matrix metallo-proteinase-12 is expressed in phagocytotic macrophages in active multiple sclerosis lesions. J Neuroimmunol 2003; 138(l-2):106-114.

Cossins JA, Clements JM, Ford J, et al. Enhanced expression of MMP-7 and MMP-9 in demyelinating multiple sclerosis lesions. Acta Neuropathologica 1997; 94(6): 590-598. Leppert D, Ford J, Stabler G, et al. Matrix metalloproteinase-9 is selectively elevated in CSF during relapse and stable phases of multiple sclerosis. Brain 1998; 121(Pt 12): 2327-2334.

Lee MA, Palace J, Stabler G, Ford J, Gearing A, Miller K. Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study. Brain 1999; 122(Pt 2):191-197.

Gijbels K, Masure S, Carton H, Opdenakker G. Gelatinase in the cerebrospinal fluid of patients with multiple sclerosis and other inflammatory neurological disorders. J Neuroimmunol 1992; 41(l):29-34.

Bever CT Jr, Rosenberg GA. Matrix metalloproteinases in multiple sclerosis: targets of therapy or markers of injury? [Review]. Neurology 1999; 53:1380-1381. Simpson JE, Newcombe J, Cuzner L, Woodroofe MN. Expression of the interferon-gamma-inducible chemokines EP-10 and Mig and their receptor, CXCR3, in multiple sclerosis lesions. Neuropath Appl Neurobiol 2000; 26:133-142.

Trebst C, Staugaitis SM, Tucky B, et al. Chemokine receptors on infiltrating leucocytes in inflammatory pathologies of the central nervous system. Neuropath Appl Neurobiol 2003; 29:584-595.

Sindem E, Patzold T, Ossege LM, Gisevius A, Malin JP. Expression of chemokine receptors CXCR3 on cerebrospinal fluid T cells is related to active MRI lesion appearance in patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 2002; 131:186-190.

Wang HY, Matsui M, Araya S, Onai N, Matsushima K, Saida T. Chemokine receptors associated with immunity within and outside the central nervous system in early relapsing-remitting multiple sclerosis. J Neuroimmunol 2002; 133:184-192. Mahad DJ, Trebst C, Kivisakk P, et al. Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. J Neuropath Exp Neurol 2004; 63:262-273. Jalonen TO, Pulkkinen K, Ukkonen M, Saarela M, Elovaara I. Differential intracellu-lar expression of CCR5 and chemokines in multiple sclerosis subtypes. J Neurol 2002; 249:576-583.

Cannella B, Raine CS. The adhesion molecular and cytokine profile of multiple sclerosis lesions. Ann Neurol 1995; 37:424-435.

Selmaj K, Raine CS, Cannella B, Brosnan CF. Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J Clin Invest 1991; 87:949-954. Hofman FM, Hinton DR, Johnson K, Merrill JE. Tumor necrosis factor identified in multiple sclerosis brain. J Exp Med 1989; 170:607-612.

Bitsch A, Kuhlmann T, Da Costa C, Bunkowski S, Polak T, Brack W. Tumor necrosis factor alpha mRNA expression in early multiple sclerosis lesions: correlation with demyelinating activity and oligodendrocyte pathology. Glia 2000; 29:366-375. Bruck W, Porada P, Poser S, et al. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann Neurol 1995; 38(5):788-796.

Roizin L, Haymaker W, D'Amelio F. Disease states involving the white matter of the central nervous system. In: Haymaker W, Adams RD, eds. Histology and Histopathol-ogy of the Nervous System. Vol. 1. Springfield: Charles C Thomas, 1982:1295-1298. Prineas JW, Graham JS. Multiple sclerosis: capping of surface immunoglobulin G on macrophages engaged in myelin breakdown. Ann Neurol 1981; 10:149-158. Bruck W, Neubert K, Berger T, Weber JR. Clinical, radiological, immunological and pathological findings in inflammatory CNS demyelination—possible markers for an antibody-mediated process. Mult Scler 2001; 7(3):173-177.

40. Storch MK, Piddlesden S, Haltia LM, Morgan P, Lassman H. Multiple sclerosis: in situ evidence for antibody and complement mediated demyelination. Ann Neurol 1998; 43(4):465-471.

41. Miterski B, Epplen JT, Gencik M. On the genetic contribution to selected multifactorial diseases with autoimmune characteristics. Cell Mol Biol 2002; 48(3):331-341.

42. Ebers GC, Sadovnick AD. The role of genetic factors in multiple sclerosis susceptibility. J Neuroimmunol 1994; 54(l-2):281-285.

43. Sadovnick AD, Baird PA. The familial nature of multiple sclerosis: age-corrected empiric recurrence risks for children and siblings of patients. Neurology 1988; 38(6): 990-991.

44. Sadovnick AD, Armstrong H, Rice GP, et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol 1993; 33(3):281-285.

45. Sadovnick AD, Ebers GC, Dyment DA, Risch NJ. The Canadian Collaborative Study Group. Evidence for genetic basis of multiple sclerosis. Lancet 1996; 347:1728-1730.

46. Ebers GC, Sadovnick AD, Risch NJ. A genetic basis for familial aggregation in multiple sclerosis. Nature 1995; 377:150-151.

47. Weiss A. T lymphocyte activation. In: Paul WE, ed. Fundamental Immunology 3rd. New York: Raven Press, 1993:16-17.

48. Lublin FD. Experimental models of autoimmune demyelination. In: Cook SD, ed. Handbook of Multiple Sclerosis 3rd. New York: Marcel Dekker Inc., 2000:139-162.

49. Stastny P. Mixed lymphocyte cultures in rheumatoid arthritis. J Clin Invest 1976; 57(5):1148-1157.

50. Svejgaard A, Platz P, Ryder LP. Joint report: insulin-dependent diabetes mellitus. In: Terasaki PI, ed. Histocompatibility Testing. Low Angeles: UCLA Tissue Typing Laboratory, 1980:238.

51. Jersild C, Fog T, Hansen GS, Thomsen M, Svejgaard A, Dupont B. Histocompatibility determinants in multiple sclerosis, with special reference to clinical course. Lancet 1973; 2(7840):1221-1225.

52. Hauser SL, Fleischnick E, Weiner HI, et al. Extended major histocompatibility complex haplotypes in patients with multiple sclerosis. Neurology 1989; 39:275-277.

53. Barcellos LF, Oksenberg JR, Begovich AB, et al. HLA-DR2 dose effect on susceptibility to multiple sclerosis and influence on disease course. Am J Hum Gene 2003; 72(3):710-716.

54. Hillert J, Masterman T. The genetics of multiple sclerosis. In: Cook SD, ed. The Handbook of Multiple Sclerosis 3rd. New York: Marcel Dekker Inc, 2001:33-65.

55. Utz U, Biddison WE, McFarland HF, McFarlin DE, Flerlage M, Martin R. Skewed T-cell receptor repertoire in genetically identical twins correlates with multiple sclerosis. Nature 1993; 364:243-247.

56. Beall SS, Concannon P, Charmley P, et al. The germline repertoire of T cell receptor beta-chain genes in patients with chronic progressive multiple sclerosis. J Neuroimmu-nol 1989; 21:59-66.

57. Utz U, Brooks JA, McFarland HF, Martin R, Biddison WE. Heterogeneity of T-cell receptor alpha-chain complementarity-determining region 3 in myelin basic protein-specific T-cells increases with severity of multiple sclerosis. Proc Natl Acad Sci USA 1994; 91:5567-5571.

58. Gimmi CD, Freeman GJ, Gribben GJ, et al. B-cell surface antigen B7/BB1 provides a costimulatory signal that induces T-cells to proliferate and secrete interleukin 2. Proc Natl Acad Sci USA 1991; 88:6575-6579.

59. Brunet JF, Denizot F, Luciani MF, et al. A new member of the immunoglobulin super-family—CTLA-4. Nature 1987; 328:267-270.

60. Oliveira EM, Bar-Or A, Waliszewska AI, et al. CTLA-4 dysregulation in the activation of myelin basic protein reactive T-cells may distinguish patients with multiple sclerosis from healthy controls. J Autoimmun 2003; 20(1):71-81.

Kantarci OH, Hebrink DD, Achenbach SJ, et al. CTLA4 is associated with susceptibility to multiple sclerosis. J Neuroimmunol 2003; 134:133-141.

Rasmussen HB, Kelly MA, Francis DA, Clausen J. CTLA4 in multiple sclerosis. Lack of genetic association in a European Caucasian population but evidence of interaction with HLA-DR2 among Shanghai Chinese. J Neurol Sci 2001; 184:143-147. Bilinska M, Frydecka I, Noga L, et al. Progression of multiple sclerosis is associated with exon 1 CTLA-4 gene polymorphism. Acta Neurologica Scandinavica 2004; 110:67-71.

Sun JB, Olsson T, Wang WZ, et al. Autoreactive T and B cells responding to myelin proteolipid protein in multiple sclerosis and controls. Eur J Immunol 1991; 21: 1461-1468.

Markovic-Plese S, Fukaura H, Zhang J, et al. T-cell recognition of immunodominant and cryptic proteolipid protein epitopes in humans. J Immunol 1995; 155:982-992. O'Connor KC, Bar-Or A, Hafler DA. Neuroimmunology of multiple sclerosis: possible roles of T and B lymphocytes in immunopathogenesis. J Clin Immunol 2001; 21(2): 81-92.

Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immuno-dominant myelin basic protein epitope in multiple sclerosis. Nature 1990; 346:183-187.

Hemmer B, Vergeli M, Tranquill L, et al. Human T-cell response to myelin basic protein peptide (83-99): extensive heterogeneity in antigen recognition, function, and pheno-type. Neurology 1997; 49(4):1116-1126.

Koehler NKU, Genain CP, Biesser B, Hauser SL. The human T cell response to myelin oligodendrocyte glycoprotein: a multiple sclerosis family-based study. J Immunol 2002; 168:5920-5927.

Brok HP, Uccelli A, Kerlero De Rosbo N, et al. Myelin/oligodendrocyte glycoprotein-induced autoimmune encephalomyelitis in common marmosets: the encephalitogenic T-cell epitope pMOG24-36 is presented by a monomorphic MHC class II molecule. J Immunol 2000; 165:1093-1110.

Pelfrey CM, Rudick RA, Cotleur AC, Lee JC, Tary-Lebmann M, Lehmann PV. Quantification of self-recognition in multiple sclerosis by single cell analysis of cytokine production. J Immunol 2000; 165:1641-1651.

Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature 1996; 383:787-793.

Mosmann TR, Coffman RL. Thl and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-173. Correale J, Gilmore W, McMillan M, et al. Patterns of cytokine secretion by autoreac-tive proteolipid protein-specific T cell clones during the course of multiple sclerosis. J Immunol 1995; 154:2959-2968.

Sorenson TL, Tani M, Jensen J, et al. Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. J Clin Invest 1999; 103:807-815.

Trebst C, Sorensen TL, Kivisakk P, et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Path 2001; 159:1701-1710.

Simpson J, Rezaie P, Newcombe J, Cuzner ML, Male D, Woodroofe MN. Expression of the beta-chemokine receptors CCR2, CCR3 and CCR5 in multiple sclerosis central nervous system tissue. J Neuroimmunol 2000; 108:192-200.

Hellings N, Gelin G, Medaer R, et al. Longitudinal study of antimyelin T-cell reactivity in relapsing-remitting multiple sclerosis: association with clinical and MRI activity. J Neuroimmunol 2002; 126:143-160.

Chou YK, Buenafe AC, Dedrick R, et al. T cell receptor V beta gene usage in the recognition of myelin basic protein by cerebrospinal fluid- and blood-derived T cells from patients with multiple sclerosis. J Neurosci Res 1994; 37:169-181.

80. Soderstrom M, Link H, Sun JB, Fredrikson S, Wang ZY, Huang WX. Autoimmune T-cell repertoire in optic neuritis and multiple sclerosis: T-cells recognizing multiple myelin proteins are accumulated in cerebrospinal fluid. J Neurol Neurosurg Psychiatry 1994; 57:544-551.

81. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T-cells specific for myelin basic protein and pro-teolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med 1994; 179:973-984.

82. Scholz C, Patton KT, Anderson DE, Freeman GJ, Hafler DA. Expansion of autoreac-tive T-cells in multiple sclerosis is independent of exogenous B7 costimulation. J Immunol 1998; 160:1532-1538.

83. Lovett-Racke AE, Trotter JL, Lauber J, Perrin PJ, June CH, Racke MK. Decreased dependence of myelin basic protein-reactive T cells on CD28-mediated costimulation in multiple sclerosis patients. A marker of activated/memory T cells. J Clin Invest 1998; 101:725-730.

84. Allegretta M, Nicklas JA, Sriram S, Altertini RJ. T cells responsive to myelin basic protein in patients with multiple sclerosis. Science 1990; 247:718-721.

85. Lodge PA, Allegretta M, Steinman L, Sriram S. Myelin basic protein peptide specificity and T-cell receptor gene usage of HPRT mutant T-cell clones in patients with multiple sclerosis. Ann Neurol 1994; 36:734-740.

86. Lodge PA, Johnson C, Sriram S. Frequency of MBP and MBP peptide-reactive T cells in the T cell population of MS patients. Neurology 1996; 46:1410-1415.

87. Trotter JL, Damico CA, Cross AH, et al. HPRT mutant T-cell lines from multiple sclerosis patients recognize myelin proteolipid protein peptides. J Neuroimmunol 1997; 75:95-103.

88. Wulff H, Calabresi PA, Allie R, et al. The voltage-gated Kvl 3 K+ channel in effector memory T-cells as new target for MS. J Clin Invest 2003; 111:1703-1713.

89. Van der Aa A, Hellings N, Medaer R, Gelin G, Palmers Y, Raus J, Stinissen P. T cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T cells: results from a pilot study. Clin Exp Immunol 2003; 131:155-168.

90. Zhang JZ, Rivera VM, Tejada-Simon MV, et al. T cell vaccination in multiple sclerosis: results of a preliminary study. J Neurol 2002; 249:212-218.

91. Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nature Med 2000; 6(10):1167-1175.

92. Walsh, MJ, Tourtelotte W, Roman J, Dreyer W. Immunoglobulin G, A, and M-clonal restriction in multiple sclerosis cerebrospinal fluid and serum-analysis by two-dimensional electrophoresis. Clin Immunol Immunopathol 1985; 35:313-327.

93. Esiri MM. Immunoglobulin-containing cells in multiple sclerosis plaques. Lancet 1977; 2:478-480.

94. Prineas JW, Wright RG. Macrophages, lymphocytes and plasma cells in the perivas-cular compartment in chronic multiple sclerosis. Lab Invest 1978; 38:409-421.

95. Gay FW, Drye TJ, Dick GW, Esiri MM. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesions. Brain 1997; 120:1461-1483.

96. Lucchinetti CF, Brack W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47:707-717.

97. Cepok S, Jacobsen M, Schock S, et al. Patterns of cerebrospinal fluid correlate with disease progression in multiple sclerosis. Brain 2001; 124:2169-2176.

98. Olsson JE, Link H. Immunoglobulin abnormalities in multiple sclerosis. Relation to clinical parameters: exacerbations and remission. Arch Neurol 1973; 28:392-399.

Rudick RA, Medendorp SV, Namey M, Boyle S, Fischer J. Multiple sclerosis progression in a natural history study: predictive value of cerebrospinal fluid free kappa light chains. Mult Scler 1995; 1:150-155.

Zeman AZJ, Kidd D, Mclean NBN, et al. A study of oligoclonal band negative multiple sclerosis. J Neurol Neurosurg Psychiatry 1996; 60:27-30.

Avasarala J, Cross AH, Trotter JL. Oligoclonal band number as a marker for prognosis in multiple sclerosis. Arch Neurol 2001; 58:2044-2045.

Villar LM, Masjuan J, Gonzalez-Porque P, et al. Intrathecal IgM synthesis in neurologic disease: relationship with disability in MS. Neurology 2002; 58:824-826. Sharief MK, Thompson EJ. The predictive value of intrathecal immunoglobulin synthesis and magnetic resonance imaging in acute isolated syndromes for subsequent development of multiple sclerosis. Ann Neurol 1991; 29:147-151.

Villar LM, Masjuan J, Gonzalez-Porque P, et al. Intrathecal IgM synthesis is a prognostic factor in multiple sclerosis. Ann Neurol 2003; 53:222-226.

Owens GP, Kraus H, Burgoon MP, Smith-Jensen T, Devlin ME, Gilden DH. Restricted use of VH4 germline segments in acute MS brain. Ann Neurol 1998; 43:236-243. Smith-Jensen T, Burgoon MP, Anthony J, Kraus H, Gilden DH, Owens GP. Comparison of IgG heavy chain sequences in MS and SSPE brains reveals an antigen-driven response. Neurology 2000; 54:1227-1232.

Brehm U, Piddlesden SJ, Gardinier MV, Linington C. Epitope specificity of demyelinat-ing monoclonal autoantibodies directed against the human myelin oligodendrocyte glycoprotein. J Neuroimmunol 1999; 97:9-15.

Kerlero de Rosbo N, Milo R, Lees MB, Burger D, Bernard CCA, Ben-Nun AP. Reactivity to myelin antigens in multiple sclerosis. Peripheral blood lymphocytes respond predominantly to myelin oligodendrocyte glycoprotein. J Clin Invest 1993; 92: 2602-2608.

Sun J, Link H, Olsson T, et al. T- and B-cell responses to myelin-oligodendrocyte glycoprotein in multiple sclerosis. J Immunol 1991; 146:1490-1495. Lindert RB, Haase CG, Brehm U, Linington C, Wekerle H, Hohlfeld R. Multiple sclerosis: B- and T-cell responses to the extracellular domain of the myelin oligodendrocyte glycoprotein. Brain 1999; 122:2089-2100.

Xiao B-G, Linington C, Link H. Antibodies to myelin-oligodendrocyte glycoprotein in cerebrospinal fluid from patients with multiple sclerosis and controls. J Neuroimmunol 1991; 31:91-96.

Schmidt S, Haase CG, Bezman L, et al. Serum autoantibody responses to myelin oligo-dendrocyte glycoprotein and myelin basic protein in X-linked adrenoleukodystrophy and multiple sclerosis. J Neuroimmunol 2001; 119:88-94.

Berger T, Rubner P, Schautzer F, et al. Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 2003; 349: 139-145.

Silber E, Semra YK, Gregson NA, Sharief MK. Patients with progressive multiple sclerosis have elevated antibodies to neurofilament subunit. Neurology 2002; 58: 1371-1381.

Eikelenboom MJ, Petzold A, Lazeron RHC, et al. Multiple sclerosis. Neurofilament light chain antibodies are correlated to cerebral atrophy. Neurology 2003; 60:219-223. Warrington AE, Bieber AJ, Ciric B, et al. Immunoglobulin-mediated CNS repair. J Allergy Clin Immunol 2001; 108:S121-S125.

Elenkov IJ. Glucocorticoids and the Thl/Th2 balance [Review]. Ann NY Acad Sci 2004; 1024:138-146.

Bournpas DT, Paliogianni F, Anastassiou ED, et al. Glucocorticoid steroid action on the immune system: molecular and cellular aspects. Clin Exp Rheumatol 1991; 9:413-423.

119. Gayo A, Mozo L, Suarez A, Tunon A, Lahoz C, Gutierrez C. Glucocorticoids increase IL-10 expression in multiple sclerosis patients with acute relapse. J Neuroimmunol 1998; 85:122-130.

120. AyanlarBatuman O, Ferrero AP, Diaz A, et al. Regulation of TGF beta 1 gene expression by glucocorticoids in normal human T lymphocytes. J Clin Invest 1989; 88:1574-1580.

121. Ott M, Seidel C, Westhoff U, et al. Soluble HLA class I and class II antigens in patients with multiple sclerosis. Tissue Antigens 1998; 51(3):301-304.

122. Zipp F, Wendling U, Beyer M, et al. Dual effect of glucocorticoids on apoptosis of human autoreactive and foreign antigen-sepcific T cells. J Neuroimmunol 2000; 110:214-222.

123. Lieb K, Engels S, Fiebich BL. Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Internat 2003; 42:131-137.

124. Crostein BN, Kimmel SC, Levin RI, et al. A mechanism for the anti-inflammatory effects of corticosteroid: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. Proc Natl Acad Sci 1992; 89:9991-9995.

125. Rosenberg GA, Dencoff BS, CorreaN, et al. Effect of steroids on CSF matrix metallo-proteinases in multiple sclerosis: relation to blood-brain barrier injury. Neurology 1996; 46:1626-1632.

126. Trotter JL, Garvey WF. Prolonged effects of large-dose methylprednisolone infusion in multiple sclerosis. Neurology 1980; 30:702-708.

127. Becker J, Grasso RJ. Suppression of phagocytosis by dexamethasone in macrophage cultures: inability of arachidonic acid, indomethacin and nordihydroguaiaretic acid to reverse the inhibitor response mediated by a steroid inducible factor. Int J Immunophar-macol 1985; 7:839-847.

128. Rudick RA, Ransohoff RM, Peppier R, VanderBrug MS, Lehmann P, Alan J. Interferon beta induces interleukin-10 expression: relevance to multiple sclerosis. Ann Neurol 1996; 40:618-627.

129. Buttmann M, Merzyn C, Rieckmann P. Interferon-beta enhances monocyte and dendritic cell expression of B7-H1 (PD-L1), a strong inhibitor of autologous T-cell activation: relevance for the immune modulatory effect in multiple sclerosis. J Neuroimmunol 2004; 155:172-182.

130. Trojano M, Avolio C, Liuzzi GM, et al. Changes of serum ICAM-1 and MMP-9 induced by rIFNbeta-lb treatment in relapsing-remitting MS. Neurology 1999; 53:1402- 1408.

131. Furlan R, Bergami A, Lang R, et al. Interferon-beta treatment in multiple sclerosis patients decreases the number of circulating T-cells producing interferon-gamma and interleukin-4. J Neuroimmunol 2000; 111:86-92.

132. Calabresi PA, Pelfrey CM, Tranquill LR, Maloni H, McFarland HF. VLA-4 expression on peripheral blood lymphocytes is downregulated after treatment of multiple sclerosis with interferon beta. Neurology 1997; 49:1111-1116.

133. Yong VW, Chabot S, Stuve O, Williams G. Interferon beta in the treatment of multiple sclerosis: mechanism of action. Neurology 1998; 51:682-689.

134. Duda PW, Schmied MC, Cook SL, Krieger JI, Hafler DA. Glatiramer acetate (Copax-one) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105:967-976.

135. Neuhaus O, Kieseier BC, Hartung HP. Mechanisms of mitoxantrone in multiple sclero-sis—what is known? J Neurol Sci 2004; 223:25-27.

136. Rivers TM, Schwentker FF. Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med 1935; 61:689-702.

137. Alvord EC Jr, Kies MW, Suckling AJ. Experimental allergic encephalomyelitis. A useful model for multiple sclerosis. New York: Alan R. Liss, Inc., 1983:227-328.

138. Pettinelli CB, McFarlin DE. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+ 2-T-lymphocytes. J Immunol 1981; 127:1420-1423.

139. Mokhtarian F, McFarlin DE, Raine CS. Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice. Nature 1984; 309:356-358.

140. Zamvil SS, Nelson PA, Mitchell DJ, Knobler RL, Fritz RB, Steinman L. Encephalito-genic T cell clones specific for myelin basic protein. An unusual bias in antigen recognition. J Exp Med 1985; 162:2107-2124.

141. Goverman J, Woods A, Larson L, Weiner LP, Hood L, Zaller DM. Transgenic mice that express a myelin basic protein-specific T-cell receptor develop spontaneous auto-immunity. Cell 1993; 72:551-560.

142. Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S. High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 1994; 78:399-408.

143. Voskuhl RR, Pitchekian-Halabi H, MacKenzie-Graham A, McFarland HF, Raine CS. Gender differences in autoimmune demyelination in the mouse: implications for multiple sclerosis. Ann Neurol 1996; 39:724-733.

144. Evron S, Brenner T, Abramsky O. Suppressive effect of pregnancy on the development of experimental allergic encephalomyelitis in rabbits. Am J Reprod Immunol 1984; 5:109-113.

145. Gunther E, Odenthal H, Wechsler W. Association between susceptibility to experimental allergic encephalomyelitis and the major histocompatibility system in congenic rat strains. Clin Exp Immunol 1978; 32:429-434.

146. Raine CS, Mokhtarian F, McFarlin DE. Adoptively transferred chronic relapsing experimental autoimmune encephalomyelitis in the mouse. Neuropathologic analysis. Lab Invest 1984; 51:534-546.

147. Raine CS, Cannella B, Hauser SL, Genain CP. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: A case for antigen-specific antibody mediation. Ann Neurol 1999; 46:144-160.

148. Lisak RP, Zweiman B, Blanchard N, Rorke LB. Effect of treatment with Copolymer 1 on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis. J Neurol Sci 1983; 62:281-293.

149. Yednock TA, Cannon C, Fritz LC, Sanchez-Madrid F, Steinman L, Karin N. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356:63-66.

150. Tuohy VK, Yu M, Yin L, Mathisen PM, Johnson JM, Kawczak JA. Modulation of the IL-10/IL-12 cytokine circuit by interferon-beta inhibits the development of epitope spreading and disease progression in murine autoimmune encephalomyelitis. J Neuro-immunol 2000; 111:55-63.

151. Mohan N, Edwards E, Cupps T, et al. Demyelination occurring during anti-tumor necrosis factor alpha therapy for inflammatory arthritides. Arth Rheum 2001; 44: 2862-2869.

PART II: CLINICAL-PATHOLOGIC CHARACTERISTICS

Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook


Post a comment