Bibliography

[1] Mallat, S. and Hwang, W. L., Singularity detection and processing with wavelets, IEEE Trans. Inf. Theory, Vol. 38, No. 2, pp. 617-643, 1992.

[2] Strickland, R. N. and Hahn, H. I., Wavelet transform matched filters for the detection and classification of microcalcifications in mammography, In: Proceedings of the International Conference on Image Processing, Washington, D.C., Vol. 1, pp. 422-425, 1995.

[3] Grossman, A. and Morlet, J., Decomposition of Hardy functions into square integrable wavelets of constant shape, SIAM J. Math. Anal., Vol. 15, No. 4, pp. 723-736, 1984.

[4] Haar, A., Zur Theorie der Orthogonalen Funktionensysteme, Math. Annal., Vol. 69, pp. 331-371, 1910.

[5] Mallat, S., A theory for multiresolution signal decomposition: The wavelet representation IEEE Trans. Pattern Anal. Mach. Intell., Vol. 11,

[6] Daubechies, I., Orthonormal bases of compactly supported wavelets, Commun. Pure Appl. Math., Vol. 41, No. 7, pp. 909-996, 1988.

[7] Unser, M., Aldroubi, A., and Laine, A., IEEE transactions on medical imaging: Special issue on wavelets in medical imaging, Vol. 22, No. 3, 2003.

[8] Weaver, J. B., Yansun, X., Healy, D. M., and Cromwell, L. D., Filtering noise from images with wavelet transforms Magn. Reson. Med., Vol. 21, No. 2, pp. 288-295, 1991.

[9] Unser, M. and Aldroubi, A., A review of wavelets in biomedical applications Proceedings of the IEEE, Vol. 84, No. 4, pp. 626-638, 1996.

[10] Laine, A., Wavelets in spatial processing of biomedical images, Ann. Rev. Biomed. Eng., Vol. 2, pp. 511-550, 2000.

[11] Aldroubi, A. and Unser, M., Wavelets in Medicine and Biology, CRC Press, Boca Raton, FL, 1996.

[12] Jain, A. K., Fundamentals of Digital Image Processing, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[13] Papoulis, A., The Fourier Integral and its Applications, McGraw-Hill, New York, NY, 1987.

[14] Mallat, S., A Wavelet Tour of Signal Processing, Academic Press, San Diego, CA, 1998.

[15] Daubechies, I., Ten Lectures on Wavelets, Siam, Philadelphia, PA, 1992.

[16] Mallat, S. and Zhong, S., Characterization of signals from multi-scale edges, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 14, No. 7, pp. 710732, 1992.

[17] Holschneider, M., Kronland-Martinet, K., Morlet, J., and Tchamitchian, P., Wavelets, Time Frequency Methods and Phase Space, SpringerVerlag, Berlin, 1989.

[18] Shensa, M., The discrete wavelet transform: Wedding the a trous and mallat algorithms, IEEE Trans. Signal Process., Vol. 40, No. 10, pp. 2464-2482, 1992.

[19] Koren, I. and Laine, A., A discrete dyadic wavelet transform for multidimensional feature analysis, In: Time Frequency and Wavelets in Biomedical Signal Processing, IEEE Press Series in Biomedical Engineering, M. Akay, Ed., IEEE Press, Piscataway, NJ, pp. 425-448, 1998.

[20] Feichtinger, H. and Strohmer, T., eds, Gabor Analysis and Algorithms: Theory and Applications, Birkhauser, Boston, MA, 1998.

[21] Wickerhauser, M. V., Adapted Wavelet Analysis from Theory to Software, Wellesley, Boston, MA, 1993.

[22] Meyer, F. and Coifman, R., Brushlets: A tool for directional image analysis and image compression, Appl. Comput. harmonic Anal., Vol. 4, pp. 147-187, 1997.

[23] Gabor, D., Theory of communication, J. IEE, Vol. 93, pp. 429-457, 1946.

[24] Bastiaans, M., A sampling theorem for the complex spectrogram and Gabor's expansion of a signal in Gaussian elementary signals, Opt. Eng., Vol. 20, No. 4, pp. 594-598, 1981.

[25] Porat, M. and Zeevi, Y., The generalized Gabor scheme of image representation in biological and machine vision, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 10, No. 4, pp. 452-468, 1988.

[26] Hubel, D. and Wiesel, T., Receptive fields, binocular interaction and functional architecture in the cat's visual cortex, J. Physiol., Vol. 160, pp. 106-154, 1962.

[27] Daugman, J., Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression, IEEE Trans. Acoust., Speech, Signal Process., Vol. 36, No. 7, pp. 1169-1179, 1988.

[28] Porat, M. and Zeevi, Y., Localized texture processing in vision: Analysis and synthesis in the Gaborian space, IEEE Trans. Biomed. Eng., Vol. 36, No. 1,pp. 115-129, 1989.

[29] Coifman, R. R., Meyer, Y., and Wickerhauser, M. V., Wavelet Analysis and signal processing, In: Wavelets and Their Applications, B. Ruskai, Ed., Jones and Barlett, Boston, pp. 153-178, 1992.

[30] Coifman, R. R. and Woog, L. J., Adapted waveform analysis, wavelet packets, and local cosine libraries as a tool for image processing, In: Investigative and Trial Image Processing, San Diego, CA, Vol. 2567,1995.

[31] Malvar, H., Lapped transforms for efficient transform/subband coding, IEEE Trans. Acoust. Sign. Speech Process., Vol. 38, pp. 969-978, 1990.

[32] Donoho, D. L. and Johnstone, I. M., Ideal de-noising in an orthonormal basis chosen from a library of bases, Statistics Department, Stanford University, Technical Report, 1994.

[33] Donoho, D., De-noising by soft-thresholding, IEEE Trans. Inf. Theory, Vol. 41, No. 3, pp. 613-627, 1995.

[34] Gao, H. and Bruce, A., Waveshrink with firm shrinkage, Statist. Sinica, Vol. 7, pp. 855-874, 1997.

[35] Laine, A., Fan, J., and Yang, W., Wavelets for contrast enhancement of digital mammography, IEEE Eng. Med. Biol. (September), pp. 536-550, 1995.

[36] Koren, I., Laine, A., and Taylor, F., Image fusion using steerable dyadic wavelet transform, In: Proceedings of the International Conference on Image Processing, Washington, D.C., pp. 232-235, 1995.

[37] Laine, A., Fan, J., and Schuler, S., A framework for contrast enhancement by dyadic wavelet analysis, In: Digital Mammography, A. Gale, S. Astley, D. Dance, and A. Cairns, Eds., Elsevier, Amsterdam, 1994.

[38] Laine, A., Schuler, S., Fan, J., and Huda, W., Mammographic feature enhancement by multi-scale analysis, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 725-740, 1994.

[39] Fan, J. and Laine, A., multi-scale contrast enhancement and de-noising in digital radiographs, In: Wavelets in Medicine and Biology, A. Aldr-oubi and M. Unser, Eds., CRC Press, Boca Raton FL, pp. 163-189,1996.

[40] Coifman, R. and Donoho, D., Translation-invariant de-noising, In: Wavelets and Statistics, A. Antoniadis and G. Oppenheim, Eds., Springer-Verlag, New York, NY, 1995.

[41] Donoho, D. and Johnstone, I., Ideal spatial adaptation via wavelet shrinkage, Biometrika, Vol. 81, pp. 425-455, 1994.

[42] Stein, C., Estimation of the mean of a multivariate normal distribution, Ann. Stat., Vol. 9, pp. 1135-1151, 1981.

[43] Donoho, D., Nonlinear solution of linear inverse problems by wavelet-vaguelette decompositions, J. Appl. Comput. Harmonic Anal., Vol. 2, No. 2, pp. 101-126, 1995.

[44] Chang, S., Yu, B., and Vetterli, M., Spatially adaptive wavelet thresholding with context modeling for image de-noising, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1522-1531, 2000.

[45] Donoho, D. and Johnstone, I., Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc., Vol. 90, No. 432, pp. 1200-1224,

1995.

[46] Koren, I., A Multi-Scale Spline Derivative-Based Transform for Image Fusion and Enhancement, Ph.D. Thesis, Electrical Engineering, University of Florida, 1996.

[47] Kalifa, J., Laine, A., and Esser, P., Regularization in tomographic reconstruction using thresholding estimators, IEEE Trans. Med. Imaging, Vol. 22, No. 3, pp. 351-359, 2003.

[48] Selesnick, I., The slantlet transform, IEEE Trans. Signal Process., Vol. 47, No. 5, pp. 1304-1313, 1999.

[49] Candes, E. and Donoho, D., Curvelets—a surprisingly effective non-adaptive representation for objects with edges, In: Curve and Surface Fitting: Saint-Malo 1999, A. Cohen, C. Rabut, and L. Schumaker, Eds., Vanderbilt University Press, Nashville, TN, 1999.

[50] Starck, J., Candes, E., and Donoho, D., The curvelet transform for image de-noising, IEEE Trans. Image Process., Vol. 11, No. 6, pp. 670684, 2002.

[51] Candes, E. and Donoho, D., Ridgelets: The key to higher-dimensional intermittency?, Phil. Trans. R. Soc. A, Vol. 357, pp. 2495-2509, 1999.

[52] Liebling, M., Blu, T., and Unser, M., Fresnelets: New Multiresolution Wavelet Bases for Digital Holography, IEEE Trans. Image Process., Vol. 12, No. 1, pp. 29-43, 2003.

[53] Gao, H., Wavelet shrinkage de-noising using the non-negative Garrote, J. Comput. Graph. Stat., Vol. 7, pp. 469-488, 1998.

[54] Antoniadis, A. and Fan, J., Regularization of wavelet approximations, J. Am. Stat. Assoc., Vol. 96, No. 455, pp. 939-967, 2001.

[55] Nason, G., Wavelet shrinkage using cross-validation, J. R. Stat. Soc., Vol. 58, pp. 463-479, 1996.

[56] Weyrich, N. and Warhola, G., De-noising using wavelets and cross-validation, NATA Adv. Study Inst., Vol. 454, pp. 523-532, 1995.

[57] Jansen, M., Malfait, M., and Bultheel, A., Generalised cross-validation for wavelet thresholding, Signal Process., Vol. 56, pp. 33-44, 1997.

[58] Ogden, R. T. and Parzen, E., Change-point approach to data analytic wavelet thresholding, Stat. Comput., Vol. 6, pp. 93-99, 1996.

[59] Angelini, E., Laine, A., Takuma, S., Holmes, J., and Homma, S., LV volume quantification via spatio-temporal analysis of real-time 3D echocardiography, IEEE Trans. Med. Imaging, Vol. 20, pp. 457-469, 2001.

[60] Jin, Y., Angelini, E., Esser, P., and Laine, A., De-noising SPECT/PET images using cross-scale regularization, In: Proceedings of the Sixth International Conference on Medical Image Computing and Computer Assisted Interventions (MICCAI 2003), Montreal, Canada, Vol. 2879, No. 2, pp. 32-40, 2003.

[61] Mulet-Parada, M. and Noble, J. A., 2D+T acoustic boundary detection in echocardiography, In: Medical Image Computing and ComputerAssisted Intervention-MICCAI'98, Cambridge, MA, pp. 806-813, 1998.

[62] Chen, C., Lu, H., and Han, K., A textural approach based on Gabor functions for texture edge detection in ultrasound images, Ultrasound Med. Biol., Vol. 27, No. 4, pp. 515-534, 2001.

[63] McLachlan, G. J. and Krishnan, T., The EM Algorithm and Extensions, Wiley & Sons, Inc., New York, 1997.

[64] Shepp, L. and Vardi, V., Maximum likelihood reconstruction for emission computed tomography, IEEE Trans. Med. Imaging, Vol. 1, pp. 113-122, 1982.

[65] Farquhar, T. H., Chatziioannou, A., Chinn, G., Dahlbom, M., and Hoffman, E. J., An investigation of filter choice for filtered back-projection reconstruction in PET, IEEE Trans. Nucl. Sci., Vol. 45 (3 Part 2), pp. 1133-1137, 1998.

[66] Hudson, H. and Larkin, R., Accelerated image reconstruction using ordered subsets of projection data, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 601-609, 1994.

[67] Freeman, W. and Adelson, E., The design and use of steerable filters, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 13, pp. 891-906, 1991.

[68] Babaud, J., Witkin, A., Baudin, M., and Duba, R., Uniqueness of the Gaussian kernel for scale-space filtering, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, pp. 26-33, 1986.

[69] Julez, B., A Theory of preattentive texture discrimination based on first-order statistics of textons, Biol. Cybern., Vol. 41, pp. 131-138, 1981.

[70] Watson, A., Barlow, H., and Robson, J., What dose the eye see best?, Nature, Vol. 302, pp. 419-422, 1983.

[71] Beck, J., Sutter, A., and Ivry, R., Spatial frequency channels and perceptual grouping in texture segregation, Comput. Vis., Graph. Image Process., Vol. 37, pp. 299-325, 1987.

[72] Daugman, J., Image analysis by local 2-D spectral signatures, J. Opt. Soc. Am. A, Vol. 2, pp. 74, 1985.

[73] Unser, M., Texture classification and segmentation using wavelet frames, IEEE Trans. Image Process., Vol. 4, No. 11, pp. 1549-1560, 1995.

[74] Laine, A. and Fan, J., Texture classification by wavelet packet signatures, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 15, No. 11, pp. 1186-1191, 1993.

[75] Laine, A. and Fan, J., Frame representation for texture segmentation, IEEE Trans. Image Process., Vol. 5, No. 5, pp. 771-780, 1996.

[76] Hsin, H. and Li, C., An experiment on texture segmentation using modulated wavelets, IEEE Trans. Syst., Man Cybern., Vol. 28, No. 5, pp. 720725, 1998.

[77] Wang, J., Multiwavelet packet transform with application to texture segmentation, Electron. Lett., Vol. 38, No. 18, pp. 1021-1023, 2002.

[78] Acharyya, M. and Kundu, M., Document image segmentation using wavelet scale-space features, IEEE Trans. Circuits Syst. Video Tech-nol., Vol. 12, No. 12, pp. 1117-1127, 2002.

[79] Wang, J., Li, J., Gray, R., and Wiederhold, G., Unsupervised multiresolution segmentation for images with low depth of field, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 23, No. 1, pp. 85-90, 2001.

[80] Etemad, K., Doermann, D., and Chellappa, R., Multi-scale segmentation of unstructured document pages using soft decision integration, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 19, No. 1, pp. 92-96, 1997.

[81] Porter, R. and Canagarajah, N., A robust automatic clustering scheme for image segmentation using wavelets, IEEE Trans. Image Process., Vol. 5, No. 4, pp. 662-665, 1996.

[82] Zhang, J., Wang, D., and Tran, Q., A wavelet-based multiresolution statistical model for texture, IEEE Trans. Image Process., Vol. 7, No. 11, pp. 1621-1627, 1998.

[83] Choi, H. and Baraniuk, R., Multis-cale image segmentation using wavelet-domain hidden markov models, IEEE Trans. Image Process., Vol. 10, No. 9, pp. 1309-1321, 2001.

[84] Li, J. and Gray, R., Context-based multi-scale classification of document images using wavelet coefficient distributions, IEEE Trans. Image Process., Vol. 9, No. 9, pp. 1604-1616, 2000.

[85] Charalampidis, D. and Kasparis, T., Wavelet-based rotational invariant roughness features for texture classification and segmentation, IEEE Trans. Image Process., Vol. 11, No. 8, pp. 825-837, 2002.

[86] Chan, T. F. and Vese, L. A., Active controus without edges, IEEE Trans. Image Process., Vol. 10, No. 2, pp. 266-277, 2001.

[87] Yezzi, A., Tsai, A., and Willsky, A., A statistical approach to image segmentation for biomodal and trimodal imagery, ICCV, pp. 898-903,1999.

[88] Canny, J., A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., Vol. 8, No. 6, pp. 679-698, 1986.

[89] Aydin, T., Yemez, Y., Anarim, E., and Sankur, B., Multi-directional and multi-scale edge detection via M-band wavelet Transform, IEEE Trans. Image Process., Vol. 5, No. 9, pp. 1370-1377, 1996.

[90] Laine, A. F., Huda, W., Chen, D., and Harris, J. G., Local enhancement of masses using continuous scale representations, J. Math. Imaging Vis., Vol. 7, No. 1, 1997.

[91] Laine, A., and Zong, X., Border indentification of echocardiograms via multi-scale edge detection and shape modeling, In: IEEE International Conference on Image Processing, Lausanne, Switzerland, pp. 287-290,

1996.

[92] Koren, I., Laine, A. F., Fan, J., and Taylor, F. J., Edge detection in echocardiographic image sequences by 3-D multiscale analysis, IEEE International Conference on Image Processing, Vol. 1, No. 1, pp. 288292, 1994.

[93] Dima, A., Scholz, M., and Obermayer, K., Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform, IEEE Trans. Image Process., Vol. 11, No. 7, pp. 790-801, 2002.

[94] Wilson, R., Calway, A., and Pearson, R., A generalized wavelet transform for Fourier analysis: The multiresolution Fourier transform and its application to image and audio signal analysis, IEEE Trans. Inf. Theory, Vol. 38, No. 2, pp. 674-690, 1992.

[95] Yoshida, H., Katsuragawa, S., Amit, Y., and Doi, K., Wavelet snake for classification of nodules and false positives in digital chest radiographs, In: IEEE EMBS Annual Conference, Chicago, IL, pp. 509-512,

1997.

[96] deRivaz, P. and Kingsbury, N., Fast Segmentation using level set curves of complex wavelet surfaces, In: IEEE International Conference on Image Processing, Vol. 3, pp. 29-32, 2000.

[97] Wu, H., Liu, J., and Chui, C., A wavelet frame based image force model for active contouring algorithms, IEEE Trans. Image Process., Vol. 9, No. 11, pp. 1983-1988, 2000.

[98] Sun, H., Haynor, D., and Kim, Y., Semiautomatic video object segmentation using VSnakes, IEEE Trans. Circuits Syst. Video Technol., Vol. 13, No. 1, pp. 75-82, 2003.

[99] Neves, S., daSilva, E., and Mendonca, G., Wavelet-watershed automatic infrared image segmentation method, IEEE Electron. Lett., Vol. 39, No. 12, pp. 903-904, 2003.

[100] Bello, M., A combined Markov random field and wave-packet transform-based approach for image segmentation, IEEE Trans. Image Process., Vol. 3, No. 6, pp. 834-846, 1994.

[101] Davatzikos, C., Tao, X., and Shen, D., Hierarchical active shape models using the wavelet transform, IEEE Trans. Med. Imaging, Vol. 22, No. 3, pp. 414-423, 2003.

[102] Strickland, R. N. and Hahn, H. I., Wavelet transforms for detecting microcalcifications in mammograms, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 218-229, 1996.

[103] Zhang, X. and Desai, M., Segmentation of bright targets using wavelets and adaptive thresholding, IEEE Trans. Image Process., Vol. 10, No. 7, pp. 1020-1030, 2001.

[104] Allen, R., Kamangar, F., and Stokely, E., Laplacian and orthogonal wavelet pyramid decompositions in coarse-to-fine registration, IEEE Trans. Signal Process., Vol. 41, No. 12, pp. 3536-3541, 1993.

[105] Unser, M., Thevenaz, P., Lee, C., and Ruttimann, U., Registration and statistical analysis of PET images using the wavelet transform, IEEE Eng. Med. Biol. (September/October), pp. 603-611, 1995.

[106] McGuire, M. and Stone, H., Techniques for multiresolution image registration in the presence of occlusions, IEEE Trans. Geosci. Remote Sensing, Vol. 38, No. 3, pp. 1476-1479, 2000.

[107] Zheng, Q. and Chellappa, R., A computational vision approach to image registration, IEEE Trans. Image Process., Vol. 2, No. 3, pp. 311-325, 1993.

[108] Moigne, J., Campbell, W., and Cromp, R., Automated parallel image registration technique based on the correlation of wavelet features, IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 8, pp. 1849-1864, 2002.

[109] Dinov, I., Mega, M., Thompson, P., Woods, R., Sumners, D., Sowell, E., and Toga, A., Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage, IEEE Trans. Inf. Technol. Biomed., Vol. 6, No. 1, pp. 73-85, 2002.

[110] Unser, M. and Blu, T., Mathematical properties of the JPEG2000 wavelet filters, IEEE Trans. Image Process., Vol. 12, No. 9, pp. 10801090, 2003.

Was this article helpful?

0 0

Post a comment