Bibliography

Cinderalla Solution

Metabolism Boosting Diet

Get Instant Access

[1] Cormack, A. M., Representation of a function by its line integral, with some radiological applications, II, J. Appl. Phys., Vol. 35, pp. 2908-2913, 1964.

[2] Hounsfield, G. N., A method and apparatus for examination of a body by radiation such as X or gamma radiation, The Patent Office, London,

1972, patent 1283915.

[3] Hounsfield, G. N., Computerized transverse axial scanning (tomography). I: Description of system, Br. J. Radiol., Vol. 46, pp. 1016-1022,

1973.

[4] Radon, J., Uber die bestimmung von funktionen durchihre integralwarte langs gewisser mannigfaltigkeiten, Bertichte Saechsiche Akad. Wissenschaften (Leipzig), Math. Phys. Klass, Vol. 69, pp. 262277, 1917.

[5] Warburg, O., The Metabolism of Tumors, Arnold and Constable, London, 1930.

[6] Rutherford, E. and Soddy, F., The cause and nature of radioactivity, Philos. Mag., Vol. 6th series, No. 4, pp. 370-396, 1902.

[7] Dirac, P. A. M., A theory of electrons and protons, Proc. R. Soc. A, Vol. 126, pp. 360-365, 1930.

[8] Anderson, C. D., Energies of cosmic-ray particles, Phys. Rev., Vol. 40, pp. 405-421, 1932.

[9] Joliot, F., Preuve experimentale de l'annihilation des electons postifs, C. R. Acad. Sci., Vol. 197, pp. 1622-1625, 1933.

[10] Thibaud, J., L'annihilation des positrons au contact de la matiere et la radiation qiu en resulte, C. R. Acad. Sci., Vol. 197, pp. 1629-1632, 1933.

[11] Beringer, R. and Montgomery, C. G., The angular distribution of positron annihilation radiation, Phys. Rev., Vol. 61, pp. 222-224, 1942.

[12] Wrenn, F. R., Jr., Good, M. L., and Handler, P., Use of positron-emitting radioisotopes for localization of brain tumors, Science, Vol. 113, pp. 525-527, 1951.

[13] Sweet, W. H., Use of nuclear disintegrations in the diagnosis and treatment of brain tumors, N. Engl. J. Med., Vol. 245, pp. 875-878, 1951.

[14] Brownell, G. L. and Sweet, W. H., Localization of brain tumors with positron emitters, Nucleonics, Vol. 11, pp. 40-45, 1953.

[15] Kuhl, D. E. and Edwards, R. Q., Image separation radio-isotope scanning, Radiology, Vol. 80, pp. 653-661, 1963.

[16] Kuhl, D. E. and Edwards, R. Q., Reorganizing data from transverse section scans using digital processing, Radiology, Vol. 91, pp. 975-983, 1968.

[17] Todd-Pokropek, A. E., The formation and display of section scans, In: Proc. Symp. Amer. Congress Radiol., pp. 545-556, 1972.

[18] Burham, C. A. and Brownell, G. L., A multi-crystal positron camera, IEEE Trans. Nucl. Sci., Vol. NS-19, pp. 201-205, 1972.

[19] Anger, H. O., Multiple plane tomographic scanner, In: Tomographic Imaging in Nuclear Medicine, Freedman, G. S., ed., Society of Nuclear Medicine, New York, pp. 2-18, 1973.

[20] Ter-Pogossian, M. M., Phelps, M. E., Hoffman, E. J., andMullani, N. A., A positron-emission transaxial tomograph for nuclear medicine imaging (PETT), Radiology, Vol. 114, pp. 89-98, 1975.

[21] Phelps, M. E., Hoffman, E. J., Mullani, N. A., and Ter-Pogossian, M. M., Application of annihilation coincidence detection to transaxial reconstruction tomography, J. Nucl. Med., Vol. 16, pp. 210-214, 1975.

[22] Hoffman, E. J., Phelps, M. E., Mullani, N. A., Higgins, C. S., and Ter-Pogossian, M. M., Design and performance characteristics of a whole body transaxial tomography, J. Nucl. Med., Vol. 17, pp. 493-503, 1976.

[23] Phelps, M. E., Hoffman, E. J., Coleman, R. E., Welch, M. J., Raichle, M. E., Weiss, E. S., Sober, B. E., and Ter-Pogossian, M. M., Tomographic images of blood pool and perfusion in brain and heart, J. Nucl. Med., Vol. 17, pp. 603-612, 1976.

[24] Phelps, M. E., Hoffman, E. J., Mullani, N. A., and Ter-Pogossian, M. M., Design considerations for a positron emission transaxial tomograph (PETT III), IEEE Trans. Nucl. Sci., Vol. 23, pp. 516-522, 1976.

[25] Phelps, M. E., Hoffman, E. J., Huang, S. C., and Kuhl, D. E., ECAT: A new computerized tomographic imaging system for positron emitting radiopharmaceuticals, J. Nucl. Med., Vol. 19, pp. 635-647, 1978.

[26] Bailey, D. L., Data acquisition and performance characterization in PET, In: Positron Emission Tomography: Basic Science and Clinical Practice, Valk, P. E., Bailey, D. L., Townsend, D. W., and Maisey, M. N., eds., Springer, London, pp. 69-90, 2003.

[27] Cho, Z. K. and Farhiki, M. R., Bismuth germanate as a potential scintillator in positron cameras, J. Nucl. Sci., Vol. 18, pp. 840-844, 1977.

[28] Casey, M. E. and Nutt, R., A multicrystal two dimensional BGO detector system for positron emission tomography, IEEE Trans. Nucl. Sci.,

[29] Defrise, M. and Kinahan, P. E., Data acquisition and image reconstruction for 3D PET, In: The Theory and Practice of 3D PET, Bendriem, B. and Townsend, D. W., eds., Kluwer Academic, Dordrecht, pp. 1-53, 1998.

[30] Kak, A. C. and Slaney, M., Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988.

[31] Ramachandran, G. N. and Lakshminarayanan, A. V., Three-dimensional reconstruction from radiograph and electron micrographs: Application of convolutions instead of Fourier transform, Proc. Natl. Acad. Sci. U.S.A., Vol. 67, pp. 2236-2240, 1971.

[32] Budinger, T. F., Derenzo, S. E., Greenberg, W. L., Gullberg, G. T., and Huesman, R. H., Quantitative potentials of dynamic emission computed tomography, J. Nucl. Med., Vol. 19, pp. 309-315, 1978.

[33] Herman, G., Image Reconstruction from Projections, Academic Press, New York, 1980.

[34] Llacer, J., Veklerov, E., Baxter, L. R., Grafton, S. T., Griffeth, L. K., Hawkins, R. A., Hoh, C. K., Mazziotta, J. C., Hoffman, E. J., and Metz, C. E., Results of a clinical operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies, J. Nucl. Med., Vol. 34, pp. 1198-1203, 1993.

[35] Wilson, D. W. and Tsui, B. M. W., Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images, IEEE Trans. Nucl. Sci., Vol. 40, pp. 1198-1203, 1993.

[36] Hebert, T. and Leahy, R., A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson data using Gibbs priors, IEEE Trans. Med. Imaging, Vol. 8, pp. 194-202, 1989.

[37] Green, P. J., Bayesian reconstruction from emission tomography data using a modified EM algorithm, IEEE Trans. Med. Imaging, Vol. 9, pp. 84-93, 1990.

[38] Shepp, L. A. and Vardi, Y., Maximum likelihood reconstruction for emission tomography, IEEE Trans. Med. Imaging, Vol. MI-1, pp. 113122, 1982.

[39] Lange, K. and Carson, R. E., EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr., Vol. 8, pp. 306-316, 1984.

[40] Hudson, H. M. and Larkin, R. S., Accelerated image reconstruction using ordered subsets of projection data, IEEE Trans. Med. Imaging, Vol. 13, pp. 601-609, 1994.

[41] Meikle, S. R., Hutton, B. F., Bailey, D. L., Hooper, P. K., and Fulham, M. J., Accelerated EM reconstruction in total body PET: potential for improving tumour detectability, Phys. Med. Biol., Vol. 39, pp. 16891704, 1994.

[42] Cherry, S. R., Meikle, S. R., and Hoffman, E. J., Correction and characterization of scattered events in three-dimensional PET using scanners with retractable septa, J. Nucl. Med., Vol. 34, pp. 671-678, 1996.

[43] Thompson, C. J., The problem of scatter correction in positron volume imaging, IEEE Trans. Med. Imaging, Vol. 12, pp. 124-132, 1993.

[44] Bailey, D. L. and Meikle, S. R., A convolution-substraction scatter correction method for 3D PET, Phys. Med. Biol., Vol. 39, pp. 411-424, 1994.

[45] Levin, C. S., Dahlbom, M., andHoffman, E. J., AMonte Carlo correction for the effect of Compton scattering in 3D PET brain imaging, IEEE Trans. Nucl. Sci., Vol. 42, pp. 1181-1185, 1995.

[46] Huang, S. C., Hoffman, E. J., Phelps, M. E., and Kuhl, D. E., Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction, J. Comput. Assist. Tomogr., Vol. 3, pp. 804-814, 1979.

[47] Dahlbom, M. and Hoffman, E. J., Problems in signal-to-noise ratio for attenuation correction in high-resolution PET, IEEE Trans. Nucl. Sci.,

[48] Hooper, P. K., Meikle, S. R., Eberl, S., and Fulham, M. J., Validation of post injection transmission measurements for attenuation correction in neurologic FDG PET studies, J. Nucl. Med., Vol. 37, pp. 128-136, 1996.

[49] Huang, S. C., Carson, R. E., Phelps, M. E., Hoffman, E. J., Schelbert, H. R., and Kuhl, D. E., A boundary method for attenuation correction in positron computed tomography, J. Nucl. Med., Vol. 22, pp. 627-637, 1981.

[50] Xu, E. Z., Mullani, N. A., Gould, K. L., and Anderson, W. L., A segmented attenuation correction for PET, J. Nucl. Med., Vol. 32, pp. 161-165, 1991.

[51] Meikle, S. R., Dahlbom, M., and Cherry, S. R., Attenuation correction using count-limited transmission data in positron emission tomography, J. Nucl. Med., Vol. 34, pp. 143-144, 1993.

[52] Phelps, M. E., Hoffman, E. J., and Huang, S. C., Effect of positron range on spatial resolution, J. Nucl. Med., Vol. 16, pp. 649-652, 1975.

[53] Hoffman, E. J. and Phelps, M. E., Positron emission tomography: Principles and quantitation, In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R., eds., Raven Press, New York, pp. 237-286, 1986.

[54] Derenzo, S. E., Budinger, T. F., andVuletich, T., High resolution positron emission tomography using small bismuth germanate crystals and individual photosensors, IEEE Trans. Nucl. Sci., Vol. NS-30, pp. 665-670,

1983.

[55] Wong, W. H., Mullani, N. A., and Wardworth, G., Characteristics of small barium fluoride (BaF2) scintillation for high intrinsic resolution time-of-flight positron emission tomography, IEEE Trans. Nucl. Sci.,

[56] Takagi, K. and Fukazawa, T., Cerium-activated Gd2SiO5 single crystal scintillator, Appl. Phys. Lett., Vol. 42, pp. 43-45, 1983.

[57] Melcher, C. L. and Schweitzer, J. S., Cerium-doped lutetium oxy-orthosilicate: A fast, efficient, new scintillator, IEEE Trans. Nucl. Sci.,

[58] Brooks, R. A. and Di Chiro, G., Principles of computer assisted tomography (CAT) in radiographic and radioisotopic imaging, Phys. Med. Biol., Vol. 21, pp. 689-732, 1976.

[59] Farquhar, T. H., Chatziioannou, A., Chinn, G., Dahlbom, M., and Hoffman, E. J., An investigation of filter choice for filtered back-projection reconstruction in PET, IEEE Trans. Nucl. Sci., Vol. 45, pp. 1133-1137,

1998.

[60] Levin, C. S. and Hoffman, E. J., Calculation of positron range and its effect on the fundamental limit of positron emission tomography system spatial resolution, Phys. Med. Biol., Vol. 44, pp. 781-799,

1999.

[61] Finkelstein, L. and Carson, E. R., Mathematical Modelling of Dynamic Biological Systems, 2nd ed., Research Studies Press Ltd, Letchworth,

1984.

[62] Huang, S. C. and Phelps, M. E., Principles of tracer kinetic modeling in positron emission tomography and autoradiography, In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps, M. E., Mazziotta, J. C., and Schel-bert, H. R., eds., Raven Press, New York, pp. 287-346, 1986.

[63] Godfrey, K., Compartmental Models And Their Application, Academic Press, New York, 1983.

[64] Bard, Y., Nonlinear Parameter Estimation, Academic Press, New York, 1974.

[65] Huang, S. C., Barrio, J. R., Yu, D. C., Chen, B., Grafton, S., and Melega, W. P., Modeling approach for separating blood time-activity curves in positron emission tomographic studies, Phys. Med. Biol., Vol. 36, pp. 749-761, 1991.

[66] Iida, H., Jones, T., and Miura, S., Modeling approach to eliminate the need to separate arterial plasma in oxygen-15 inhalation positron emission tomography, J. Nucl. Med., Vol. 34, pp. 1333-1340, 1993.

[67] Phelps, M. E., Huang, S. C., Hoffman, E. J., Selin, C., Sokoloff, L., and Kuhl, D. E., Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method, Ann. Neurol., Vol. 6, pp. 371-388, 1979.

[68] Huang, S. C., Phelps, M. E., Hoffman, E. J., Sideris, K., Selin, C., and Kuhl, D. E., Noninvasive determination of local cerebral metabolic rate of glucose in man, Am. J. Physiol., Vol. 238, pp. E69-E82, 1980.

[69] Carson, R. E., Yan, Y., and Shrager, R., Absolute cerebral blood flow with 15O-water and PET: Determination without a measured input function, In: Quantification of Brain Function using PET, Myers, R., Cunningham, V., Bailey, D., and Jones, T., eds., Academic Press, San Diego, pp. 185-190, 1996.

[70] Di Bella, E. V. R., Clackdoyle, R., and Gullberg, G. T., Blind estimation of compartmental model parameters, Phys. Med. Biol., Vol. 44, pp. 765-780, 1999.

[71] Wong, K. P., Feng, D., Meikle, S. R., and Fulham, M. J., Simultaneous estimation of physiological parameters and the input function—In vivo PET data, IEEE Trans. Inform. Technol. Bromed., Vol. 5, pp. 67-76, 2001.

[72] Logan, J., Fowler, J. S., Volkow, N. D., Wang, G. J., Ding, Y. S., and Alexoff, D. L., Distribution volume ratios without blood sampling from graphical analysis of PET data, J. Cereb. Blood Flow Metab., Vol. 16, pp. 834-840, 1996.

[73] Lammertsma, A. A. and Hume, S. P., Simplified reference tissue model for PET receptor studies, Neuroimage, Vol. 4, pp. 153-158, 1996.

[74] Gunn, R. N., Lammertsma, A. A., Hume, S. P., and Cunningham, V. J., Parametric imaging of ligand-receptor binding in PET using a simplified reference region model, Neuroimage, Vol. 6, pp. 279-287, 1997.

[75] Patlak, C. S., Blasberg, R. G., and Fenstermacher, J., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data, J. Cereb. Blood Flow Metab., Vol. 3, pp. 1-7, 1983.

[76] Patlak, C. S. and Blasberg, R. G., Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data: Generalizations, J. Cereb. Blood Flow Metab., Vol. 5, pp. 584-590, 1985.

[77] Logan, J., Fowler, J. S., Volkow, N. D., Wolf, A. P., Dewey, S. L., Schlyer, D. J., MacGregor, R. R., Hitzemann, R., Bendriem, B., Gatley, S. J., and Christman, D. R., Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-nC-methyl]-(-)-cocaine PET studies in human subjects, J. Cereb. Blood Flow Metab., Vol. 10, pp. 740-747, 1990.

[78] Yokoi, T., Iida, H., Itoh, H., and Kanno, I., A new graphic plot analysis for cerebral blood flow and partition coefficient with iodine-123-iodoamphetamine and dynamic SPECT validation studies using oxygen-15-water and PET, J. Nucl. Med., Vol. 34, No. 3, pp. 498-505, 1993.

[79] Yokoi, T., Iida, H., and Kanno, I., A comparative study of the three fast algorithms to estimate cerebral blood flow and distribution volume using N-isopropyl-p-[123I]iodoamphetamine and two SPECT scans, Phys. Med. Biol., Vol. 40, pp. 1499-1515, 1995.

[80] Blomqvist, G., On the construction of functional maps inpositron emission tomography, J. Cereb. Blood Flow Metab., Vol. 4, pp. 629-632, 1984.

[81] Kety, S. S. and Schmidt, C. F., The nitrous oxide method for the quantitative determination of cerebral blood flow in man: Theory, procedure, and normal values, J. Clin. Invest., Vol. 27, pp. 476-483, 1948.

[82] Evans, A. C., A double integral form of the three-compartmental, four-rate-constant model for faster generation of parameter maps, J. Cereb. Blood Flow Metab., Vol. 7, No. suppl., p. S453, 1987.

[83] Feng, D., Wang, Z., and Huang, S. C., A study on statistically reliable and computationally efficient algorithms for the measurement of local cerebral blood flow with positron emission tomography, IEEE Trans. Med. Imaging, Vol. 12, pp. 182-188, 1993.

[84] Feng, D. and Ho, D., Parametric imaging algorithm for multi-compartmental models dynamic studies with positron emission tomography, In: Quantification of Brain Function: Tracer Kinetics and Image Analysis in Brain PET, Uemura, K., Lassen, N. A., Jones, T., and Kanno, I., eds., Elsevier Science, Amsterdam, pp. 127-136, 1993.

[85] Feng, D., Huang, S. C., Wang, Z., and Ho, D., An unbiased parametric imaging algorithm for non-uniformly sampled biomedical system parameter estimation, IEEE Trans. Med. Imaging, Vol. 15, No. 4, pp. 512-518, 1996.

[86] Chen, K., Lawson, M., Reiman, E., Cooper, A., Feng, D., Huang, S. C., Bandy, D., Ho, D., Yun, L. S., and Palant, A., Generalized linear least squares method for fast generation of myocardial blood flow parametric images with N-13 ammonia PET, IEEE Trans. Med. Imaging, Vol. 17, pp. 236-243, 1998.

[87] Cunningham, V. J. and Jones, T., Spectral analysis of dynamic PET studies, J. Cereb. Blood Flow Metab., Vol. 13, pp. 15-23, 1993.

[88] Lawson, C. L. and Hanson, R. J., Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ, 1974.

[89] Meikle, S. R., Matthews, J. C., Cunningham, V. J., Bailey, D. L., Livier-atos, L., Jones, T., and Price, P., Parametric image reconstruction using spectral analysis of PET projection data, Phys. Med. Biol., Vol. 43, pp. 651-666, 1998.

[90] Carson, E. R., Cobelli, C., and Finkelstein, L., The Mathematical Modeling of Metabolic and Endocrine Systems: Model Formulation, Identification and Validation, John Wiley and Sons, New York, 1983.

[91] Fagarasan, J. T. and DiStefano, J. J., III, Hidden pools, hidden modes and visible repeated eigenvalues in compartmental models, Math. Biosci., Vol. 82, pp. 87-113, 1986.

[92] Huang, S. C., Carson, R. E., and Phelps, M. E., Measurement of local blood flow and distribution volume with short-lived isotopes: A general input technique, J. Cereb. Blood Flow Metab., Vol. 2, pp. 99-108, 1982.

[93] Alpert, N. M., Eriksson, L., Chang, J. Y., Bergstrom, M., Litton, J. E., Correia, J. A., Bohm, C., Ackerman, R. H., and Taveras, J. M., Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography, J. Cereb. Blood Flow Metab., Vol. 4, pp. 28-34, 1984.

[94] Carson, R. E., Huang, S. C., and Green, M. V., Weighted integration method for local cerebral blood flow measurement with positron emission tomography, J. Cereb. Blood Flow Metab., Vol. 6, pp. 245-258, 1986.

[95] Yokoi, T., Kanno, I., Iida, H., Miura, S., and Uemura, K., A new approach of weighted integration technique based on accumulated images using dynamic PET and H25O, J. Cereb. Blood Flow Metab., Vol. 11, pp. 492501, 1991.

[96] Tsui, E. and Budinger, T. F., Transverse section imaging of mean clearance times, Phys. Med. Biol., Vol. 23, pp. 644-653, 1978.

[97] Phelps, M. E., Mazziotta, J. C., and Huang, S. C., Study of cerebral function with positron computed tomography, J. Cereb. Blood Flow Metab., Vol. 2, pp. 113-162, 1982.

[98] Mazziotta, J. C. and Phelps, M. E., Positron emission tomography studies of the brain, In: Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and Heart, Phelps, M. E., Mazziotta, J. C., and Schelbert, H. R., eds., Raven Press, New York, pp. 493-579, 1986.

[99] Grafton, S. T. and Mazziotta, J. C., Cerebral pathophysiology evaluated with positron emission tomography, In: Diseases of the Nervous System: Clinical Neurobiology, Asbury, A. K., Mckhann, G. M., and McDonald, W. I., eds., Saunders, Philadelphia, pp. 1573-1588, 1992.

[100] Frey, K. A., PET studies of neurochemical systems, In: Positron Emission Tomography: Basic Science and Clinical Practice, Valk, P. E., Bailey, D. L., Townsend, D. W., and Maisey, M. N., eds., Springer, London, pp. 309-327, 2003.

[101] Bar-Shalom, R., Valdivia, A. Y., and Blaufox, M. D., PET imaging in oncology, Semin. Nucl. Med., Vol. 30, pp. 150-185, 2000.

[102] Rhodes, C. G., Wise, R. J., Gibbs, J. M., Frackowiak, R. J., Hatazawa, J., Palmer, A. J., Thomas, D. G. T., and Jones, T., In vivo disturbance of the oxidative metabolism of glucose in human cerebral gliomas, Ann. Neurol., Vol. 14, pp. 614-626, 1983.

[103] Di Chiro, G., Positron emission tomography using [18F]fluorodeoxyglucose in brain tumors: a powerful diagnostic and prognostic tool, Invest. Radiol., Vol. 22, pp. 360-371, 1987.

[104] Doyle, W. K., Budinger, T. F., Valk, P. E., Levin, V. A., and Gutin, P. H., Differentiation of cerebral radiation necrosis from tumor recurrence by [18F]FDG and 82Rb positron emission tomography, J. Comput. Assist. Tomogr., Vol. 11, pp. 563-570, 1987.

[105] Strauss, L. G. and Conti, P. S., The applications of PET in clinical oncology, J. Nucl. Med., Vol. 32, pp. 623-648, 1991.

[106] Glasby, J. A., Hawkins, R. A., Hoh, C. K., and Phelps, M. E., Use of positron emission tomography in oncology, Oncology, Vol. 7, pp. 4146, 1993.

[107] Coleman, R. E., Clinical PET in oncology, Clin. Pos. Imaging, Vol. 1, pp. 15-30, 1998.

[108] Anger, H. O., Scintillation camera, Rev. Sci. Instrum., Vol. 29, pp. 27-33, 1958.

[109] Smith, A. M., Gullberg, G. T., Christian, P. E., and Datz, F. L., Kinetic modeling of teboroxime using dynamic SPECT imaging of a canine model, J. Nucl. Med., Vol. 35, pp. 484-495, 1994.

[110] Smith, A. M., Gullberg, G. T., and Christian, P. E., Experimental verification of technetium 99m-labeled teboroxime kinetic parameters in the myocardium with dynamic single-photon emission computed tomography: Reproducibility, correlation to flow, and susceptibility to extravascular contamination, J. Nucl. Cardiol., Vol. 3, pp. 130-142, 1996.

[111] Iida, H. and Eberl, S., Quantitative assessment of regional myocardial blood flow with thallium-201 and SPECT, J. Nucl. Cardiol., Vol. 5, pp. 313-331, 1998.

[112] Eberl, S., Quantitative Physiological Parameter Estimation from Dynamic Single Photon Emission Computed Tomography (SPECT), Ph.D. Thesis, University of New South Wales, Australia, 2000.

[113] Laruelle, M., Baldwin, R. M., Rattner, Z., Al-Tikriti, M. S., Zea-Ponce, Y., Zoghbi, S. S., Charney, D. S., Price, J. C., Frost, J. J., Hoffer, P. B., and Innis, R. B., SPECT quantification of [123I]iomazenil binding to benzodiazepine receptors in nonhuman primates. I: Kinetic modeling of single bolus experiments, J. Cereb. Blood Flow Metab., Vol. 14, pp. 439-452, 1994.

[114] Boundy, K. L., Rowe, C. C., Black, A. B., Kitchener, M. I., Barnden, L. R., Sebben, R., Kassiou, M., Katsifis, A., and Lambrecht, R. M., Localization of temporal lobe epileptic foci with iodine-123 iododexetimide cholin-ergic neuroreceptor single-photon emission computed tomography, Neurology, Vol. 47, pp. 1015-1020, 1996.

[115] Chefer, S. I., Horti, A. G., Lee, K. S., Koren, A. O., Jones, D. W., Gorey, J. G., Links, J. M., Mukhin, A. G., Weinberger, D. R., and London, E. D., In vivo imaging of brain nicotinic acetylcholine receptors with 5-[123I]iodo-A-85380 using single photon emission computed tomography, Life Sci., Vol. 63, pp. PL355-PL360, 1998.

[116] Kassiou, M., Eberl, S., Meikle, S. R., Birrell, A., Constable, C., Fulham, M. J., Wong, D. F., and Musachio, J. L., In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT, Nucl. Med. Biol., Vol. 28, pp. 165-175, 2001.

[117] Pelizzari, C. A., Chen, G. T. Y., Spelbring, D. R., Weichselbaum, R. R., and Chen, C. T., Accurate three-dimensional registration of CT, PET and/or MR images of the brain, J. Comput. Assist. Tomogr., Vol. 13, pp. 20-26, 1989.

[118] Woods, R. P., Mazziotta, J. C., and Cherry, S. R., MRI-PET registration with automated algorithm, J. Comput. Assist. Tomogr., Vol. 17, pp. 536-546, 1993.

[119] Wagner, H. N., Jr., Images of the future, J. Nucl. Med., Vol. 19, pp. 599-605, 1978.

[120] Beyer, T., Townsend, D. W., Brun, T., Kinahan, P. E., Charron, M., Roddy, R., Jerin, J., Young, J., Byars, L., and Nutt, R., A combined PET/CT scanner for clinical oncology, J. Nucl. Med., Vol. 41, pp. 1369-1379, 2000.

Was this article helpful?

0 0
Turbo Metabolism

Turbo Metabolism

Forget Silly Diets-They Don't Work. Weight loss has got to be the most frustrating experience for many people, young and old alike. Eating foods that are just horrible, denying yourself foods you truly love and enjoy. Exercising, even though you absolutely hate exercising, and end up stiff as a board with no results.

Get My Free Ebook


Post a comment