The Origin Of Agerelated Increase In Failure Rates

The aging period for most species occupies the greater part of their lifespan; therefore any model of mortality must explain the existence of this period. It turns out that the phenomena of mortality increase with age and the subsequent mortality leveling-off are theoretically predicted to be an inevitable feature of all reliability models that consider aging as a progressive accumulation of random damage (Gavrilov and Gavrilova, 1991). The detailed mathematical proof of this prediction for some particular models is provided elsewhere (Gavrilov and Gavrilova, 1991; 2001) and is briefly described in the next sections of this chapter.

The simplest schema, which demonstrates an emergence of aging in a redundant system, is presented in Figure 5.7.

If the destruction of an organism occurs not in one but in two or more sequential random stages, this is sufficient for the phenomenon of aging (mortality increase) to appear and then to vanish at older ages. Each stage of destruction corresponds to one of the organism's vitally important structures being damaged. In the simplest organisms with unique critical structures, this damage usually leads to death. Therefore, defects in such organisms do not accumulate, and the organisms themselves do not age—they just die when damaged. For example, the inactivation of microbial cells and spores exposed to a hostile environment (such as heat) follows approximately a nonaging mortality kinetics; their semilogarithmic survival curves are almost linear (Peleg et al., 2003). This observation of nonaging survival

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook

Post a comment