Longevity Blueprint

Longevity Health and Wellness Protocol

Get Instant Access

Bitterman, K.J., Medvedik, O., and Sinclair, D.A. (2003). Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiol Mol Biol Rev 67, 376-399, table of contents.

Bluher, M., Kahn, B.B., and Kahn, C R. (2003). Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572-574.

Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., and Jacquet, M. (1998). Msn2p and Msn4p control a large number of genes induced at the diauxic transition which are repressed by cyclic AMP in Saccharomyces cerevisiae. J Bacteriol 180, 1044-1052.

Braunstein, M., Rose, A.B., Holmes, S.G., Allis, C.D., and Broach, J.R. (1993). Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7, 592-604.

Brown-Borg, H.M., Borg, K.E., Meliska, C.J., and Bartke, A. (1996). Dwarf mice and the ageing process. Nature 384, 33.

Brown-Borg, H.M., and Rakoczy, S.G. (2000). Catalase expression in delayed and premature aging mouse models. Exp Gerontol 35, 199-212.

Brown-Borg, H.M., Rakoczy, S.G., Romanick, M.A., and Kennedy, M.A. (2002). Effects of growth hormone and insulin-like growth factor-1 on hepatocyte antioxidative enzymes. Exp Biol Med 227, 94-104.

Clancy, D.J., Gems, D., Harshman, L.G., Oldham, S., Stocker, H., Hafen, E., Leevers, S.J., and Partridge, L. (2001). Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292, 104-106.

Codon, A.C., Gasent-Ramirez, J.M., and Benitez, T. (1995). Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker's yeasts [published erratum appears in Appl Environ Microbiol 1995 Apr; 61(4):1677]. Appl Environ Microbiol 61, 630-638.

Coschigano, K.T., Clemmons, D., Bellush, L.L., and Kopchick, J.J. (2000). Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608-2613.

D'Mello N.P., Childress, A.M., Franklin, D.S., Kale, S.P., Pinswasdi, C., and Jazwinski, S.M. (1994). Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269, 15451-15459.

Fabrizio, P., Battistella, L., Vardavas, R., Gattazzo, C., Liou, L.L., Diaspro, A., et al. (2004a). Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol 166, 1055-1067.

Fabrizio, P., Liou, L.L., Moy, V.N., Diaspro, A., Selverstone-Valentine, J., Gralla, E.B., and Longo, V.D. (2003). SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163, 35-46.

Fabrizio, P., Pletcher, S.D., Minois, N., Vaupel, J.W., and Longo, V.D. (2004b). Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557, 136-142.

Fabrizio, P., Pozza, F., Pletcher, S.D., Gendron, C.M., and Longo, V.D. (2001). Regulation of longevity and stress resistance by Sch9 in yeast. Science 292, 288-290.

Flurkey, K., Papaconstantinou, J., and Harrison, D.E. (2002). The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123, 121-130.

Geyskens, I., Kumara, S., Donaton, M., Bergsma, J., Thevelein, J., and Wera, S. (2000). Expression of mammalian PKB complements deletion of the yeast protein kinase Sch9. Nato Science Series A316, 117-126.

Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418, 387-391.

Giannakou, M.E., Goss, M., Junger, M.A., Hafen, E., Leevers, S.J., and Partridge, L. (2004). Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361.

Guarente, L. (2001). SIR2 and aging—The exception that proves the rule. Trends Genet 17, 391-392.

Harris, N., Costa, V., MacLean, M., Mollapour, M., Moradas-Ferreira, P., and Piper, P.W. (2003). MnSOD overexpression extends the yeast chronological (G(0)) life span but acts independently of Sir2p histone deacetylase to shorten the replicative life span of dividing cells. Free Radic Biol Med 34, 1599-1606.

Harris, N., MacLean, M., Hatzianthis, K., Panaretou, B., and Piper, P.W. (2001). Increasing Saccharomyces cerevisiae stress resistance, through the overactivation of the heat shock response resulting from defects in the Hsp90 chaperone, does not extend replicative life span but can be associated with slower chronological ageing of nondividing cells. Mol Genet Genomics 265, 258-263.

Herker, E., Jungwirth, H., Lehmann, K.A., Maldener, C., Frohlich, K.U., Wissing, S., et al. (2004). Chronological aging leads to apoptosis in yeast. J Cell Biol 164, 501-507.

Holzenberger, M., Dupont, J., Ducos, B., Leneuve, P., Geloen, A., Even, P.C., et al. (2003). IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421, 182-187.

Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300, 1142-1145.

Hwangbo, D.S., Gersham, B., Tu, M.P., Palmer, M., and Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562-566.

Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395-400.

Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., and Tyers, M. (2004). A dynamic transcrip-tional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 18, 2491-2505.

Kaeberlein, M., McVey, M., and Guarente, L. (1999). The SIR2/ 3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13, 2570-2580.

Kenyon, C. (2001). A conserved regulatory system for aging. Cell 105, 165-168.

Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277, 942-946.

Kirchman, P.A., Kim, S., Lai, C.Y., and Jazwinski, S.M. (1999). Interorganelle signaling is a determinant of longevity in Saccharomyces cerevisiae. Genetics 152, 179-190.

Kops, G.J., Dansen, T.B., Polderman, P.E., Saarloos, I., Wirtz, K.W., Coffer, P.J., et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419, 316-321.

Liu, K., Zhang, X., Lester, R.L., and Dickson, R.C. (2005). The sphingolipid long chain base phytosphingosine activates AGC kinases in Saccharomyces cerevisiae including Ypk1, Ypk2 and Sch9. J Biol Chem. 280, 22679-22687.

Longo, V.D., and Finch, C.E. (2003). Evolutionary medicine: From dwarf model systems to healthy centenarians. Science 299, 1342-1346.

Lyman, C.P., O'Brien, R.C., Greene, G.C., and Papagrangos, E.D. (1981). Hybernational longevity in the Turkish hamster Mesocricetus brandti. Science 212, 668-670.

Madeo, F., Herker, E., Maldener, C., Wissing, S., Lachelt, S., Herlan, M., et al. (2002). A caspase-related protease regulates apoptosis in yeast. Mol Cell 9, 911-917.

Melov, S., Ravenscroft, J., Malik, S., Gill, M.S., Walker, D.W., Clayton, P.E., et al. (2000). Extension of life-span with superoxide dismutase/catalase mimetics. Science 289, 1567-1569.

Morris, J.Z., Tissenbaum, H.A., and Ruvkun G. (1996). A phospatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhbditis elegans. Nature 382, 536-539.

Mortimer, R.K. (1959). Life span of individual yeast cells. Nature 183, 1751-1752.

Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., and Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389, 994-999.

Orr, W.C., and Sohal, R.S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263, 1128-1130.

Paradis, S., Ailion, M., Toker, A., Thomas, J.H., and Ruvkun, G. (1999). A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 13, 1438-1452.

Parkes, T.L., Elia, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P., and Boulianne, G.L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat Genet 19, 171-174.

Riddle, D.L. (1988). The Nematode C. elegans (Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press).

Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101, 15998-16003.

Roosen, J., Engelen, K., Marchal, K., Mathys, J., Griffioen, G., Cameroni, E., et al. (2005). PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 55, 862-880.

Schmitt, A.P., and McEntee K. (1996). Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. PNAS 93, 5777-5782.

Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., et al. (2005). Extension of murine lifespan by overexpression of catalase targeted to Mitochondria. Science 808, 1909-1911.

Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles—A cause of aging in yeast. Cell 91, 1033-1042.

Smith, A., Ward, M.P., and Garrett, S. (1998). Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. Embo J 17, 3556-3564.

Sun, J., Kale, S.P., Childress, A.M., Pinswasdi, C., and Jazwinski, S.M. (1994). Divergent roles of RAS1 and RAS2 in yeast longevity. J Biol Chem 269, 18638-18645.

Sun, J., and Tower, J. (1999). FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19, 216-228.

Tanny, J.C., Dowd, G.J., Huang, J., Hilz, H., and Moazed, D. (1999). An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99, 735-745.

Tatar, M., Kopelman, A., Epstein, D., Tu, M.P., Yin, C.M., and Garofalo, R.S. (2001). A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292, 107-110.

Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230.

Toda, T., Cameron, S., Sass, P., and Wigler, M. (1988). SCH9, a gene of Saccharomyces cerevisiae that encodes a protein distinct from, but functionally and structurally related to, cAMP-dependent protein kinase catalytic subunits. Genes Dev 2, 517-527.

Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P. (1994). New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10, 1793-1808.

Werner-Washburne, M., Braun, E.L., Crawford, M.E., and Peck, V.M. (1996). Stationary phase in Saccharomyces cerevisiae. Mol Microbiol 19, 1159-1166.

Wissing, S., Ludovico, P., Herker, E., Buttner, S., Engelhardt, S.M., Decker, T., et al. (2004). An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166, 969-974.

Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430, 686-689.

Yan, L.J., Levine, R.L., and Sohal, R.S. (1997). Oxidative damage during aging targets mitochondrial aconitase [published erratum appears in Proc Natl Acad Sci USA 1998 Feb 17;95(4): 1968]. Proc Natl Acad Sci USA 94, 11168-11172.

Zambrano, M.M., and Kolter, R. (1996). GASPing for life in stationary phase. Cell 86, 181-184.

Was this article helpful?

0 0
The Latest Anti Aging Treatments

The Latest Anti Aging Treatments

Are You Striving To Look And Feel Youthful? Wish You Could Add 20 Years To Your Life? Discover the Secrets to a Longer, Healthier Life With This Fantastic Anti-Aging Resource. You might be feeling and looking great now, but have you ever thought about what youll feel and look like several years from now? Have you ever considered that the choices you make today directly influence how well you age?

Get My Free Ebook

Post a comment