Barja, G., and Herrero, A. (2000). Oxidative damage to mito-chondrial DNA is inversely related to maximum life span in the heart and brain of mammals. Faseb J 14(2): 312-318.

Bohr, V.A., Smith, C.A., Okumoto, D.S., and Hanawalt, P.C. (1985). DNA repair in an active gene: Removal of pyrimidine dimers from the dhfr gene of cho cells is much more efficient than in the genome overall. Cell 40(2): 359-369.

Brandon, M.C., Lott, M.T., Nguyen, K.C., Spolim, S., Navathe, S.B., Baldi, P., and Wallace, D C. (2005). Mitomap: A human mitochondrial genome database—2004 update. Nucleic Acids Res. 33(Database issue): D611-D613.

Brunet-Rossinni, A.K. (2004). Reduced free-radical production and extreme longevity in the little brown bat (myotis lucifugus) versus two non-flying mammals. Mech. Ageing Dev. 125(1): 11-20.

Cameron, N. and Demerath, E.W. (2002). Critical periods in human growth and their relationship to diseases of aging. Am. J. Phys. Anthropol. Suppl. 35: 159-184.

Clayton, D.A., Doda, J.N., and Friedberg, E.C. (1974). The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71(7): 2777-2781.

Corral-Debrinski, M., Horton, T., Lott, M.T., Shoffner, J.M., Beal, M.F., and Wallace, D C. (1992). Mitochondrial DNA deletions in human brain: Regional variability and increase with advanced age. Nat. Genet. 2(4): 324-329.

Cortopassi, G.A., Shibata, D., Soong, N.W., and Arnheim, N. (1992). A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc. Natl. Acad. Sci. USA 89(16): 7370-7374.

Craig, E.E., Chesley, A., and Hood, D.A. (1998). Thyroid hormone modifies mitochondrial phenotype by increasing protein import without altering degradation. Am. J. Physiol. 275(6 Pt 1): C1508-C1515.

Craig, E.E., and Hood, D.A. (1997). Influence of aging on protein import into cardiac mitochondria. Am. J. Physiol. 272(6 Pt 2): H2983-H2988.

de Grey, A.D. (2004). Mitochondrial mutations in mammalian aging: An over-hasty about-turn? Rejuvenation Res. 7(3): 171-174.

de Souza-Pinto, N.C., Eide, L., Hogue, B.A., Thybo, T., Stevnsner, T., Seeberg, E., Klungland, A., and Bohr, V. A. (2001). Repair of 8-oxodeoxyguanosine lesions in mitochondrial dna depends on the oxoguanine dna glycosylase (ogg1) gene and 8-oxoguanine accumulates in the mitochondrial dna of ogg1-defective mice. Cancer Res. 61(14): 5378-5381.

de Souza-Pinto, N.C., Hogue, B.A., and Bohr, V.A. (2001). DNA repair and aging in mouse liver: 8-oxodg glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic. Biol. Med. 30(8): 916-923.

Druzhyna, N.M., Hollensworth, S.B., Kelley, M.R., Wilson, G.L., and Ledoux, S.P. (2003). Targeting human 8-oxoguanine glycosylase to mitochondria of oligodendro-cytes protects against menadione-induced oxidative stress. Glia 42(4): 370-378.

ESCODD (2003). Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic. Biol. Med. 34(8): 1089-1099.

Evans, M.D., Dizdaroglu, M., and Cooke, M.S. (2004). Oxidative DNA damage and disease: Induction, repair and significance. Mutat Res. 567(1): 1-61.

Gallagher, I.M., Jenner, P., Glover, V., and Clow, A. (2000). Cuzn-superoxide dismutase transgenic mice: No effect on longevity, locomotor activity and 3h-mazindol and 3h-spiperone binding over 19 months. Neurosci. Lett. 289(3): 221-223.

Hamilton, M.L., Van Remmen, H., Drake, J.A., Yang, H., Guo, Z.M., Kewitt, K., Walter, C.A., and Richardson, A. (2001). Does oxidative damage to DNA increase with age? Proc. Natl. Acad. Sci. USA 98(18): 10469-10474.

Hansford, R.G., Hogue, B.A., and Mildaziene, V. (1997). Dependence of h2o2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg. Biomembr. 29(1): 89-95.

Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11(3): 298-300.

Hashiguchi, K., Stuart, J.A., de Souza-Pinto, N.C., and Bohr, V. A. (2004). The c-terminal alphao helix of human ogg1 is essential for 8-oxoguanine DNA glycosylase activity: The mitochondrial beta-ogg1 lacks this domain and does not have glycosylase activity. Nucleic Acids Res. 32(18): 5596-5608.

Hollensworth, S.B., Shen, C., Sim, J.E., Spitz, D.R., Wilson, G. L., and LeDoux, S.P. (2000). Glial cell type-specific responses to menadione-induced oxidative stress. Free Radic. Biol. Med. 28(8): 1161-1174.

Hudson, E.K., Hogue, B.A., Souza-Pinto, N.C., Croteau, D.L., Anson, R.M., Bohr, V.A. et al. (1998). Age-associated change in mitochondrial DNA damage. Free Radic. Res. 29(6): 573-579.

Ishchenko, A., Sinitsyna, O., Krysanova, Z., Vasyunina, E.A., Saparbaev, M., Sidorkina, O. et al. (2003). Age-dependent increase of 8-oxoguanine-, hypoxanthine-, and uracil-DNA glycosylase activities in liver extracts from oxys rats with inherited overgeneration of free radicals and wistar rats. Med. Sci. Monit. 9(1): BR16-BR24.

Jacobs, H.T. (2003). The mitochondrial theory of aging: Dead or alive? Aging Cell 2(1): 11-17.

Kunishige, M., Mitsui, T., Akaike, M., Kawajiri, M., Shono, M., Kawai, H. et al. (2003). Overexpressions of myoglobin and antioxidant enzymes in ragged-red fibers of skeletal muscle from patients with mitochondrial encephalomyopathy. Muscle Nerve 28(4): 484-492.

LeDoux, S.P., Driggers, W.J., Hollensworth, B.S., and Wilson, G.L. (1999). Repair of alkylation and oxidative damage in mitochondrial DNA. Mutat. Res. 434(3): 149-159.

LeDoux, S.P., and Wilson, G.L. (2001). Base excision repair of mitochondrial DNA damage in mammalian cells. Prog. Nucleic Acid Res. Mol. Biol. 68: 273-284.

LeDoux, S.P., Wilson, G.L., Beecham, E.J., Stevnsner, T., Wassermann, K., and Bohr, V.A. (1992). Repair of mitochondrial DNA after various types of DNA damage in chinese hamster ovary cells. Carcinogenesis 13(11): 1967-1973.

Lee, D.W., and Yu, B.P. (1990). Modulation of free radicals and superoxide dismutases by age and dietary restriction. Aging 2(4): 357-362.

Lin, M.T., Simon, D.K., Ahn, C.H., Kim, L.M., and Beal, M. F. (2002). High aggregate burden of somatic mtdna point mutations in aging and Alzheimer's disease brain. Hum. Mol. Genet. 11(2): 133-145.

Lu, C.Y., Wang, E.K., Lee, H.C., Tsay, H.J., and Wei, Y.H. (2003). Increased expression of manganese-superoxide dis-mutase in fibroblasts of patients with cpeo syndrome. Mol. Genet. Metab. 80(3): 321-329.

Maklashina, E. and Ackrell, B.A. (2004). Is defective electron transport at the hub of aging? Aging Cell 3(1): 21-27.

Mandavilli, B.S., Santos, J.H., and Van Houten, B. (2002). Mitochondrial DNA repair and aging. Mutat. Res. 509(1-2): 127-151.

Miquel, J., Economos, A.C., Fleming, J., and Johnson, J.E., Jr. (1980). Mitochondrial role in cell aging. Exp. Gerontol. 15(6): 575-591.

Miyaki, M., Yatagai, K., and Ono, T. (1977). Strand breaks of mammalian mitochondrial DNA induced by carcinogens. Chem. Biol. Interact 17(3): 321-329.

Nyaga, S.G., and Bohr, V.A. (2002). Characterization of specialized mtdna glycosylases. Mitochondrial DNA: Methods and protocols. W.C. Copeland. Totowa, NJ, Humana Press: 227-244.

Ojala, D., Montoya, J., and Attardi, G. (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature 290(5806): 470-474.

Orr, W.C., Mockett, R.J., Benes, J.J., and Sohal, R.S. (2003). Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J. Biol. Chem. 278(29): 26418-26422.

Orr, W.C., and Sohal, R.S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263(5150): 1128-1130.

Pettepher, C.C., LeDoux, S.P., Bohr, V.A., and Wilson, G. L. (1991). Repair of alkali-labile sites within the mitochondrial DNA of rinr 38 cells after exposure to the nitrosourea streptozotocin. J. Biol. Chem. 266(5): 3113-3117.

Price, G.B., Modak, S.P., and Makinodan, T. (1971). Age-associated changes in the DNA of mouse tissue. Science 171(974): 917-920.

Rasmussen, U.F., Krustrup, P., Kjaer, M., and Rasmussen, H. N. (2003). Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp. Gerontol. 38(8): 877-886.

Ross, O.A., McCormack, R., Curran, M.D., Duguid, R.A., Barnett, Y.A., Rea, I.M. et al. (2001). Mitochondrial DNA polymorphism: Its role in longevity of the irish population. Exp. Gerontol. 36(7): 1161-1178.

Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M. et al. Extension of murine life span by overexpression of catalase targeted to mitochondria. Science. 380(5730): 1909-1911.

Shen, G.P., Galick, H., Inoue, M., and Wallace, S.S. (2003). Decline of nuclear and mitochondrial oxidative base excision repair activity in late passage human diploid fibroblasts. DNA Repair (Amst) 2(6): 673-693.

Simon, D.K., Lin, M.T., Zheng, L., Liu, G.J., Ahn, C.H., Kim, L.M. et al. (2004). Somatic mitochondrial DNA mutations in cortex and substantia nigra in aging and Parkinson's disease. Neurobiol. Aging 25(1): 71-81.

Sohal, R.S., Toy, P.L., and Allen, R.G. (1986). Relationship between life expectancy, endogenous antioxidants and products of oxygen free radical reactions in the housefly, Musca domestica. Mech. Ageing Dev. 36(1): 71-77.

Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273(5271): 59-63.

St-Pierre, J., Buckingham, J.A., Roebuck, S.J., and Brand, M.D. (2002). Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277(47): 44784-44790.

Staniek, K., and Nohl, H. (2000). Are mitochondria a permanent source of reactive oxygen species? Biochim. Biophys. Acta 1460(2-3): 268-275.

Stuart, J.A., Bourque, B.M., de Souza-Pinto, N.C., and Bohr, V.A. (2005). No evidence of mitochondrial respiratory dysfunction in ogg1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic Biol. Med. 38(6): 737-745.

Szczesny, B., Hazra, T.K., Papaconstantinou, J., Mitra, S., and Boldogh, I. (2003). Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases. Proc. Natl. Acad. Sci. USA 100(19): 10670-10675.

Taanman, J.W. (1999). The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1410(2): 103-123.

Thorslund, T., Sunesen, M., Bohr, V.A., and Stevnsner, T. (2002). Repair of 8-oxog is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair (Amst) 1(4): 261-273.

Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A.T., Bruder, C.E. et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA poly-merase. Nature 429(6990): 417-423.

Van Remmen, H., Ikeno, Y., Hamilton, M., Pahlavani, M., Wolf, N., Thorpe, S R. et al. (2003). Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16(1): 29-37.

Weindruch, R., Walford, R.L., Fligiel, S., and Guthrie, D. (1986). The retardation of aging in mice by dietary restriction: Longevity, cancer, immunity and lifetime energy intake. J. Nutr. 116(4): 641-654. Yakes, F.M., and Van Houten, B. (1997). Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Nat.l Acad. Sci. USA 94(2): 514-519.

Yang, M.Y., Bowmaker, M., Reyes, A., Vergani, L., Angeli, P., Gringeri, E. et al. (2002). Biased incorporation of ribonucleo-tides on the mitochondrial l-strand accounts for apparent strand-asymmetric DNA replication. Cell 111(4): 495-505.

This page intentionally left blank

Blood Pressure Health

Blood Pressure Health

Your heart pumps blood throughout your body using a network of tubing called arteries and capillaries which return the blood back to your heart via your veins. Blood pressure is the force of the blood pushing against the walls of your arteries as your heart beats.Learn more...

Get My Free Ebook

Post a comment