References

Beckman, K.B., and Ames, B.N. (1998). The free radical theory of ageing matures. Physiol. Rev. 78, 547-581.

Carey, J.R. (1993). Applied Demography for Biologists. Oxford University Press, Oxford.

Carvalho, G.B., Kapahi, P., and Benzer, S. (2005). Compensatory ingestion upon dietary restriction in Drosophila melanogaster. Nature Methods 2, 813-815.

Chapman, T., Hutchings, J., and Partridge, L. (1993). No reduction in the cost of mating for Drosophila melanogaster females mating with spermless males. Proc. Royal Soc. Lon. 253, 211-217.

Chippindale, A.K., Hoang, D.T., Service, P.M., and Rose, M.R. (1994). The evolution of development in Drosophila melanogaster selected for postponed senescence. Evolution 48, 1880-1899.

Cohen, A.A. (2004). Female post-reproductive lifespan: A general mammalian trait. Biol. Rev. 79, 733-750.

Connolly, J.B., and Tully, T. (1998). Behaviour, learning, and memory. In Drosophila—A Practical Approach (D.B. Roberts, ed.), pp. 265-318. Oxford University Press, Oxford.

Cooley, L., Kelley, R., and Spradling, A. (1988). Insertional mutagenesis of the Drosophila genome with single P elements. Science 239, 1121-1128.

DeVeale, B., Brummel, T., and Seroude, L. (2004). Immunity and aging: the enemy within? Aging Cell 3, 195-208.

Driver, C. (2000). The circadian clock in old Drosophila melanogaster. Biogerontology 1, 157-162.

Farmer, K.J., and Sohal, R.S. (1989). Relationship between superoxide anion radical generation and aging in the housefly, Musca domestica. Free Radic. Biol. Med. 7, 23-29.

Finch, C.E. (1990). Longevity, Senescence, and the Genome. University of Chicago Press, Chicago.

Fridell, Y.W.C., Sánchez-Blanco, A., Silvia, B.A., and Helfand, S.L. (2005). Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab. 1, 145-152.

Garofalo, R.S. (2002). Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol. Metab. 13, 156-162.

Giannakou, M.E., Goss, M., Junger, M.A., Hafen, E., Leevers, S.J. and Partridge, L. (2004). Long-lived Drosophila with overexpressed dFOXO in adult fat body. Science 305, 361.

Good, T.P., and Tatar, M. (2001). Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J. Insect Physiol. 47, 1467-1473.

Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300.

Harman, D. (1972). The biologic clock: The mitochondria? J. Am. Geriatr. Soc. 20, 145-147.

Helfand, S.L., and Rogina, B. (2003). Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet. 37, 329-348.

Holloszy, J.O. (1997). Mortality rate and longevity of food-restricted exercising male rats: A reevaluation. J. Appl. Physiol. 82, 399-403.

Holloszy, J.O., and Smith, E.K. (1986). Longevity of cold-exposed rats: A reevaluation of the "rate-of-living theory.'' J. Appl. Physiol. 61, 1656-1660.

Hughes, K.A., Alipaz, J.A., Drnevich, J.M., and Reynolds, R.M. (2002). A test of evolutionary theories of aging. Proc. Nat. Acad. Sci. USA 99, 14286-14291.

Hulbert, A.J., Clancy, D.J., Mair, W., Braeckman, B.P., Gems, D., and Partridge, L. (2004). Metabolic rate is not reduced by dietary restriction or by lowered insulin/IGF-1 signalling and is not correlated with individual lifespan in Drosophila melanogaster. Exp. Gerontol. 39, 1137-1143.

Hwangbo, D.S., Gershman, B., Tu, M.P., Palmer, M., and Tatar, M. (2004). Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body. Nature 429, 562-566.

Khazaeli, A.A., Van Voorhies, W., and Curtsinger, J.W. (2005). Longevity and metabolism in Drosophila melanogaster: Genetic correlations between life span and age-specific metabolic rate in populations artificially selected for long life. Genetics 169, 231-242.

Le Bourg, E. (2001). Oxidative stress, aging and longevity in Drosophila melanogaster. FEBS Lett. 498, 183-186.

Lin, Y.J., Seroude, L., and Benzer, S. (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943-946.

Lints, K.A. (1978). Genetics and Ageing. Karger, Basel.

Loeb, J., and Northrop, J.H. (1917). On the influence of food and temperature on the duration of life. J. Biol. Chem. 32, 103-121.

Magwere, T., Chapman, T., and Partridge, L. (2004). Sex differences in the effect of dietary restriction on life span and mortality rates in female and male Drosophila melanogaster. J. Gerontol. Appl. Biol. Sci. Med. Sci. 59, 3-9.

Mair, W., Goymer, P., Pletcher, S.D., and Partridge, L. (2003). Demography of dietary restriction and death in Drosophila. Science 301, 1731-1733.

Mair, W., Sgro, C.M., Johnson, A.P., Chapman, T., and Partridge, L. (2004). Lifespan extension by dietary restriction in female Drosophila melanogaster is not caused by a reduction in vitellogenesis or ovarian activity. Exp. Gerontol. 39, 1011-1019.

Manev, H., and Dimitrijevic, N. (2005). Fruit flies for anti-pain drug discovery. Life Sci. 76, 2403-2407.

Matthews, K.A., Kaufman, T.C., and Gelbart, W.M. (2005). Research resources for Drosophila: The expanding universe. Nat. Rev. Genet. 6, 179-193.

Miwa, S., Riyahi, K., Partridge, L., and Brand, M.D. (2004). Lack of correlation between mitochondrial reactive oxygen species production and life span in Drosophila. Ann. N. Y. Acad. Sci. 1019, 388-391.

Miwa, S., St-Pierre, J., Partridge, L., and Brand, M.D. (2003). Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35, 938-948.

O'Kane C.J. (1998). Enhancer traps. In Drosophila—Practical Approach (D.B. Roberts, ed.), pp. 131-178. Oxford University Press, Oxford.

Orr, W.C., Mockett, R.J., Benes, J.J., and Sohal, R.S. (2003). Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. J. Biol. Chem. 278, 26418-26422.

Parkes, T.L., Elia, A.J., Dickinson, D., Hilliker, A.J., Phillips, J.P., and Boulianne, G.L. (1998). Extension of Drosophila lifespan by overexpression of human SOD1 in motorneurons. Nat. Genet. 19, 171-174.

Partridge, L., and Pletcher, S.D. (2003). Genetics of aging in Drosophila. In Aging of Organisms (H.D. Osiewacz, ed.), pp. 125-161. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Partridge, L., Pletcher, S.D., and Mair, W. (2005). Dietary restriction, mortality trajectories, risk and damage. Mech. Ageing Dev. 126, 35-41.

Phelan, J.P., Archer, M.A., Beckman, K.A., Chippindale, A.K., Nusbaum, T.J., and Rose, M.R. (2003). Breakdown in correlations during laboratory evolution. I. Comparative analyses of Drosophila populations. Evolution 57, 527-535.

Pletcher, S.D., Macdonald, S.J., Marguerie, R., Certa, U., Stearns, S.C., Goldstein, D.B., and Partridge, L. (2002). Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr. Biol. 12, 712-723.

Poirier, L., and Seroude, L. (2005). Genetic approaches to study aging in Drosophila melenogaster. Age 27, in press.

Promislow, D.E., and Haselkorn, T.S. (2002). Age-specific metabolic rates and mortality rates in the genus Drosophila. Aging Cell 1, 66-74.

Roberts, D.B., and Standen, G.N. (1998). The elements of Drosophila biology and genetics. In Drosophila—A Practical

Approach. (D.B. Roberts, ed.), pp. 1-54. Oxford University Press, Oxford.

Rockstein, M., and Miquel, J. (1973). Aging in insects. In The Physiology of Insecta (M. Rockstein, ed.), pp. 371-478. Academic Press Inc., New York.

Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA 101, 15998-16003.

Rogina, B., Reenan, R.A., Nilsen, S.P., and Helfand, S.L. (2000). Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290, 2137-2140.

Rose, M.R. (1984). Laboratory evolution of postponed senescene in Drosophila. Evolution 38, 1004-1010.

Ross, R.E. (2000). Age-specific decrease in aerobic efficiency associated with increase in oxygen free radical production in Drosophila melanogaster. J. Insect Physiol. 46, 1477-1480.

Sacktor, B. (1974). Biological oxidations and energetics in insect mitochondria. In The Physiology of Insecta Vol. IV (M. Rockstein, ed.), pp. 271-353. Academic Press, New York.

Sohal, R.S. (1976). Aging changes in insect flight muscle. Gerontology 22, 317-333.

Sohal, R.S. (1993). Aging, cytochrome oxidase activity, and hydrogen peroxide release by mitochondria. Free Radic. Biol. Med. 14, 583-588.

Sohal, RS., Agarwal, S., Dubey, A., and Orr, W.C. (1993). Protein oxidative damage is associated with life expectancy of houseflies. Proc. Natl. Acad. Sci. USA 90, 7255-7259.

Sohal, R.S., and Sohal, B.H. (1991). Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 57, 187-202.

Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273, 59-63.

Speakman, J.R., Talbot, D.A., Selman, C., Snart, S., McLaren, J.S., Redman, P., et al. (2004). Uncoupled and surviving: Individual mice with high metabolism have greater mitochondrial uncoupling and live longer. Aging Cell 3, 87-95.

Sun, J., Folk, D., Bradley, T.J., and Tower, J. (2002). Induced overexpression of mitochondrial Mn-superoxide dismutase extends the life span of adult Drosophila melanogaster. Genetics 161, 661-672.

Sun, J., Molitor, J., and Tower, J. (2004). Effects of simultaneous over-expression of Cu/ZnSOD and MnSOD on Drosophila melanogaster life span. Mech. Ageing Dev. 125, 341-349.

Sun, J., and Tower, J. (1999). FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol. Cell Biol. 19, 216-228.

Tatar, M. (2004). The neuroendocrine regulation of Drosophila aging. Exp. Gerontol. 39, 1745-1750.

Tower, J. (2000). Transgenic methods for increasing Drosophila life span. Mech. Ageing Dev. 118 , 1-14.

Trout, W.E., and Kaplan, W.D. (1970). A relation between longevity, metabolic rate, and activity in shaker mutants of Drosophila melanogaster. Exp. Gerontol. 5, 83-92.

van Voorhies, W.A., Khazaeli, A.A., and Curtsinger, J.W. (2003). Selected contribution: Long-lived Drosophila melanogaster lines exhibit normal metabolic rates. J. Appl. Physiol. 95, 2605-2613.

Venken, K.J., and Bellen, H.J. (2005). Emerging technologies for gene manipulation in Drosophila melanogaster. Nat. Rev. Genet. 6, 167-178.

Weis-Fogh, T. (1964). Diffusion in insect wing muscle, the most active tissue known. J. Exp. Biol. 41, 229-256.

Wessells, R.J., Fitzgerald, E., Cypser, J.R., Tatar, M., and Bodmer, R. (2004). Insulin regulation of heart function in aging fruit flies. Nat. Genet. 36, 1275-1281.

Williams, G.C. (1957). Pleiotropy, natural selection and the evolution of senescence. Evolution 11, 398-411.

Yampolsky, L.Y., Pearse, L.E., and Promislow, D.E.L. (2000). Age-specific effects of novel mutations in Drosophila melanogaster: I. Mortality. Genetica (Dordrecht) 110, 11-29.

Yan, L.J., Levine, R.L., and Sohal, R.S. (1997). Oxidative damage during aging targets mitochondrial aconitase. Proc. Natl. Acad. Sci. USA 94, 11168-11172.

Yan, L.J., and Sohal, R.S. (1998). Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc. Natl. Acad. Sci. USA 95, 12896-12901.

Yan, L.J., and Sohal, R.S. (2000). Prevention of flight activity prolongs the life span of the housefly, Musca domestica, and attenuates the age-associated oxidative damage to specific mitochondrial proteins. Free Radic. Biol. Med. 29, 1143-1150.

This page intentionally left blank

Models

Losing Weight Natures Way

Losing Weight Natures Way

Feel Healthier And Look Better Without Resorting To Drugs! Would you like to get your hands on a this report that can teach you everything you need to know about losing weight naturally?

Get My Free Ebook


Post a comment