References

Grow Younger Blood

Longevity Health and Wellness Protocol

Get Instant Access

Akimenko, M.A., Johnson, S.L., Westerfield, M., and Ekker, M. (1995). Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121, 347-357.

Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B., et al. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89, 10114-10118.

Baerlocher, G.M., and Lansdorp, P.M. (2004). Telomere length measurements using fluorescence in situ hybridization and flow cytometry. Methods Cell Biol 75, 719-750.

Bakkenist, C.J., Drissi, R., Wu, J., Kastan, M.B., and Dome, J.S. (2004). Disappearance of the telomere dysfunction-induced stress response in fully senescent cells. Cancer Res 64, 3748-3752.

Bakkers, J., Hild, M., Kramer, C., Furutani-Seiki, M., and Hammerschmidt, M. (2002). Zebrafish DeltaNp63 is a direct target of Bmp signaling and encodes a transcriptional repressor blocking neural specification in the ventral ectoderm. Dev Cell 2, 617-627.

Balaban, R.S., Nemoto, S., and Finkel, T. (2005). Mitochondria, oxidants, and aging. Cell 120, 483-495.

Barbieri, M., Bonafe, M., Franceschi, C., and Paolisso, G. (2003). Insulin/IGF-I-signaling pathway: an evolutionarily conserved mechanism of longevity from yeast to humans. Am J Physiol Endocrinol Metab 285, E1064-E1071.

Barlow, C., Dennery, P.A., Shigenaga, M.K., Smith, M.A., Morrow, J.D., Roberts, L.J., 2nd, et al. (1999a). Loss of the ataxiA-Telangiectasia gene product causes oxidative damage in target organs. Proc Natl Acad Sci USA 96, 9915-9919.

Barlow, C., Eckhaus, M.A., Schaffer, A.A., and Wynshaw-Boris, A. (1999b). Atm haploinsufficiency results in increased sensitivity to sublethal doses of ionizing radiation in mice. Nat Genet 21, 359-360.

Barlow, C., Hirotsune, S., Paylor, R., Liyanage, M., Eckhaus, M., Collins, F., et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86, 159-171.

Bartek, J., and Lukas, J. (2003). Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421-429.

Beausejour, C.M., Krtolica, A., Galimi, F., Narita, M., Lowe, S.W., Yaswen, P., and Campist, J. (2003). Reversal of human cellular senescence roles of the p53 and p16 pathways. Embo J 22, 4212-4222.

Belinsky, S.A., Swafford, D.S., Finch, G.L., Mitchell, C.E., Kelly, G., Hahn, F.F., Anderson, M.W., and Nikula, K.J. (1997). Alterations in the K-ras and p53 genes in rat lung tumors. Environ Health Perspect 105 Suppl 4, 901-906.

Berghmans, S., Murphey, R.D., Wienholds, E., Neuberg, D., Kutok, J.L., Fletcher, C.D., Morris, J.P., Liu, T.X., Schulte-Merker, S., Kanki, J.P., et al. (2005). tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci USA 102, 407-412.

Bi, X., Wei, S.C., and Rong, Y.S. (2004). Telomere protection without a telomerase; The role of ATM and Mre11 in Drosophila telomere maintenance. Curr Biol 14, 1348-1353.

Blackburn, E.H. (2001). Switching and signaling at the telomere. Cell 106, 661-673.

Brunk, U.T., and Terman, A. (2002). Lipofuscin: Mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33, 611-619.

Campisi, J. (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513-522.

Cahill, G.M. (1996). Circadian regulation of melatonin production in cultured zebrafish pineal and retina. Brain Res 708, 177-181.

Cahill, G.M. (2002). Clock mechanisms in zebrafish. Cell Tissue Res 309, 27-34.

Cao, L., Li, W., Kim, S., Brodie, S.G., and Deng, C.X. (2003). Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 17, 201-213.

Celeste, A., Petersen, S., Romanienko, P.J., Fernandez-Capetillo, O., Chen, H.T., Sedelnikova, O.A., et al. (2002). Genomic instability in mice lacking histone H2AX. Science 296, 922-927.

Chehab, N.H., Malikzay, A., Appel, M., and Halazonetis, T.D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G(1) by stabilizing p53. Genes Dev 14, 278-288.

Chehab, N.H., Malikzay, A., Stavridi, E.S., and Halazonetis, T.D.

(1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96, 13777-13782.

Chen, G., and Lee, E. (1996). The product of the ATM gene is a 370-kDa nuclear phosphoprotein. J Biol Chem 271, 33693-33697.

Chen, Q., and Ames, B.N. (1994). Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proc Natl Acad Sci USA 91, 4130-4134.

Cheng, R., Ford, B.L., O'Neal, P.E., Mathews, C.Z., Bradford, C.S., Thongtan, T., et al. (1997). Zebrafish (Danio rerio) p53 tumor suppressor gene: cDNA sequence and expression during embryogenesis. Mol Mar Biol Biotechnol 6, 88-97.

Cheng, W.H., von Kobbe, C., Opresko, P.L., Arthur, L.M., Komatsu, K., Seidman, M.M., et al. (2004). Linkage between Werner syndrome protein and the Mre11 complex via Nbs1. J Biol Chem 279, 21169-21176.

Chien, K.R., and Karsenty, G. (2005). Longevity and lineages: Toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120, 533-544.

Conboy, I.M., Conboy, M.J., Wagers, A.J., Girma, E.R., Weissman, I.L., and Rando, T.A. (2005). Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760-764.

Concannon, P. (2002). ATM heterozygosity and cancer risk. Nat Genet 32, 89-90.

Curtis, H.J. (1963). Biological mechanisms underlying the aging process. Science 141, 686-694.

D'Adda di Fagagna, F., Reaper, P.M., Clay-Farrace, L., Fiegler, H., Carr, P., Von Zglinicki, T., Saretzki, G., Carter, N.P., and Jackson, S.P. (2003). A DNA damage checkpoint response in telomere-initiated senescence. Nature 426, 194-198.

Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A., and Colombo, R. (2003). Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329, 23-38.

Dekens, M.P., Santoriello, C., Vallone, D., Grassi, G., Whitmore, D., and Foulkes, N.S. (2003). Light regulates the cell cycle in zebrafish. Curr Biol 13, 2051-2057.

Delaunay, F., Thisse, C., Marchand, O., Laudet, V., and Thisse, B.

(2000). An inherited functional circadian clock in zebrafish embryos. Science 289, 297-300.

Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92, 9363-9367.

Dirac, A.M., and Bernards, R. (2003). Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem 278, 11731-11734.

Dodd, A., Chambers, S.P., Nielsen, P.E., and Love, D.R. (2004). Modeling human disease by gene targeting. Methods Cell Biol 76, 593-612.

Dodd, A., Curtis, P.M., Williams, L.C., and Love, D.R. (2000). Zebrafish: Bridging the gap between development and disease. Hum Mol Genet 9, 2443-2449.

Egami, N., and Eto, H. (1973). Effect of x-irradiation during embryonic stage on life span in the fish, Oryzias latipes. Exp Gerontol 8, 219-222.

Elson, A., Wang, Y., Daugherty, C.J., Morton, C.C., Zhou, F., Campos-Torres, J., and Leder, P. (1996). Pleiotropic defects in ataxiA-Telangiectasia protein-deficient mice. Proc Natl Acad Sci USA 93, 13084-13089.

Falck, J., Coates, J., and Jackson, S.P. (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434, 605-611.

Ferbeyre, G., and Lowe, S.W. (2002). The price of tumour suppression? Nature 415, 26-27.

Finch, C.E., and Austad, S.N. (2001). History and prospects: Symposium on organisms with slow aging. Exp Gerontol 36, 593-597.

Finch, C.E., and Crimmins, E.M. (2004). Inflammatory exposure and historical changes in human life-spans. Science 305, 1736-1739.

Finch, C.E., and Ruvkun, G. (2001). The genetics of aging. Annu Rev Genomics Hum Genet 2, 435-462.

Finkel, T., and Holbrook, N.J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.

FitzGerald, M.G., Bean, J.M., Hegde, S.R., Unsal, H., MacDonald, D.J., Harkin, D.P., et al. (1997). Heterozygous ATM mutations do not contribute to early onset of breast cancer. Nat Genet 15, 307-310.

Garg, R., Geng, C.D., Miller, J.L., Callens, S., Tang, X., Appel, B., and Xu, B. (2004). Molecular cloning and characterization of the catalytic domain of zebrafish homologue of the ataxiA-Telangiectasia mutated gene. Mol Cancer Res 2, 348-353.

Gerhard, G.S., Kauffman, E.J., Wang, X., Stewart, R., Moore, J.L., Kasales, C.J., Demidenko, E., and Cheng, K.C. (2002). Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp Gerontol 37, 1055-1068.

Giannelli, F. (1986). DNA maintenance and its relation to human pathology. J Cell Sci Suppl 4, 383-416.

Gilad, S., Khosravi, R., Shkedy, D., Uziel, T., Ziv, Y., Savitsky, K., et al. (1996). Predominance of null mutations in ataxiA-Telan-giectasia. Hum Mol Genet 5, 433-439.

Gilley, J., and Fried, M. (2001). One INK4 gene and no ARF at the Fugu equivalent of the human INK4A/ARF/INK4B tumour suppressor locus. Oncogene 20, 7447-7452.

Gire, V. (2004). Dysfunctional telomeres at senescence signal cell cycle arrest via Chk2. Cell Cycle 3, 1217-1220.

Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J.M., and Dulic, V. (2004). DNA damage checkpoint kinase Chk2 triggers replicative senescence. Embo J 23, 2554-2563.

Goldsmith, P. (2004). Zebrafish as a pharmacological tool: The how, why and when. Curr Opin Pharmacol 4, 504-512.

Green, M.H., Marcovitch, A.J., Harcourt, S.A., Lowe, J.E., Green, I.C., and Arlett, C.F. (1997). Hypersensitivity of ataxiA-Telan-giectasia fibroblasts to a nitric oxide donor. Free Radic Biol Med 22, 343-347.

Guarente, L., and Picard, F. (2005). Calorie restriction—the SIR2 connection. Cell 120, 473-482.

Hadley, E.C., Lakatta, E.G., Morrison-Bogorad, M., Warner, H.R., and Hodes, R.J. (2005). The future of aging therapies. Cell 120, 557-567.

Henikoff, S., Till, B.J., and Comai, L. (2004). TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135, 630-636.

Hensey, C., Robertson, K., and Gautier, J. (2000). Expression and subcellular localization of X-ATM during early Xenopus development. Dev Genes Evol 210, 467-469.

Herbig, U., Jobling, W.A., Chen, B.P., Chen, D.J., and Sedivy, J.M., (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21 (CIP1), but not p16 (INK4a). Mol Cell 14, 501-513.

Herzog, K.H., Chong, M.J., Kapsetaki, M., Morgan, J.I., and McKinnon, P.J. (1998). Requirement for Atm in ionizing radiation-induced cell death in the developing central nervous system. Science 280, 1089-1091.

Hill, A.J., Teraoka, H., Heideman, W., and Peterson, R.E. (2005). Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86, 6-19.

Hirao, A., Kong, Y.Y., Matsuoka, S., Wakeham, A., Ruland, J., Yoshida, H., et al. (2000). DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 287, 1824—1827.

Hurd, M.W., Debruyne, J., Straume, M., and Cahill, G.M. (1998). Circadian rhythms of locomotor activity in zebrafish. Physiol Behav 65, 465-472.

Imamura, S., and Kishi, S. (2005). Molecular cloning and functional characterization of zebrafish ATM. Int J Biochem Cell Biol 37, 1105-1116.

Ito, K., Hirao, A., Arai, F., Matsuoka, S., Takubo, K., Hamaguchi, I., Nomiyama, K., Hosokawa, K., Sakurada, K., Nakagata, N., et al. (2004). Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431, 997-1002.

Jacobs, J.J., and de Lange, T. (2004). Significant role for p16INK4a in p53-independent telomere-directed senescence. Curr Biol 14, 2302-2308.

Jault, C., Pichon, L., and Chluba, J. (2004). Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40, 759-771.

Jones, S.N., Roe, A.E., Donehower, L.A., and Bradley, A. (1995). Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208.

Kastan, M.B., and Lim, D.S. (2000). The many substrates and functions of ATM. Nat Rev Mol Cell Biol 1, 179-186.

Katic, M., and Kahn, C.R. (2005). The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62, 320-343.

Kazimi, N., and Cahill, G.M. (1999). Development of a circadian melatonin rhythm in embryonic zebrafish. Brain Res Dev Brain Res 117, 47-52.

Keating, M.T. (2004). Genetic approaches to disease and regeneration. Philos Trans R Soc Lond B Biol Sci 359, 795-798.

Kenyon, C. (2005). The plasticity of aging: Insights from long-lived mutants. Cell 120, 449-460.

Keyes, W.M., Wu, Y., Vogel, H., Guo, X., Lowe, S.W., and Mills, A.A. (2005). p63 deficiency activates a program of cellular senescence and leads to accelerated aging. Genes Dev 19, 1986-1999.

Kim, S.T., Lim, D.S., Canman, C.E., and Kastan, M.B. (1999). Substrate specificities and identification of putative substrates of ATM kinase family members. J Biol Chem 274, 37538-37543.

Kipling, D., Davis, T., Ostler, E.L., and Faragher, R.G. (2004). What can progeroid syndromes tell us about human aging? Science 305, 1426-1431.

Kishi, S. (2004). Functional aging and gradual senescence in zebrafish. Ann N Y Acad Sci 1019, 521-526.

Kishi, S., and Lu, K.P. (2002). A critical role for Pin2/TRF1 in ATM-dependent regulation. Inhibition of Pin2/TRF1 function complements telomere shortening, radiosensitivity, and the G(2)/M checkpoint defect of ataxiA-Telangiectasia cells. J Biol Chem 277, 7420-7429.

Kishi, S., Uchiyama, J., Baughman, A.M., Goto, T., Lin, M.C., and Tsai, S.B. (2003). The zebrafish as a vertebrate model of functional aging and very gradual senescence. Exp Gerontol 38, 777-786.

Kishi, S., Zhou, X.Z., Ziv, Y., Khoo, C., Hill, D.E., Shiloh, Y., and Lu, K.P. (2001). Telomeric protein Pin2/TRF1 as an important ATM target in response to double strand DNA breaks. J Biol Chem 276, 29282-29291.

Lai, S.R., Phipps, S.M., Liu, L., Andrews, L.G., and Tollefsbol, T.O. (2005). Epigenic control of telomerase and modes of telomere maintenance in aging and abnormal systems. Front Biosci 10, 1779-1796.

Langenau, D.M., Feng, H., Berghmans, S., Kanki, J.P., Kutok, J.L., and Look, A.T. (2005). Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 102, 6068-6073.

Langheinrich, U., Hennen, E., Stott, G., and Vacun, G. (2002). Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12, 2023-2028.

Laposa, R.R., Henderson, J.T., Xu, E., and Wells, P.G. (2004). Atmnull mice exhibit enhanced radiation-induced birth defects and a hybrid form of embryonic programmed cell death indicating a teratological suppressor function for ATM. Faseb J18, 896-898.

Lavin, M.F., and Khanna, K.K. (1999). ATM: The protein encoded by the gene mutated in the radiosensitive syndrome ataxiA-Te-langiectasia. Int J Radiat Biol 75, 1201-1214.

Lavin, M.F., and Shiloh, Y. (1997). The genetic defect in ataxiA-Telangiectasia. Annu Rev Immunol 15, 177-202.

Lee, C.K., Klopp, R.G., Weindruch, R., and Prolla, T.A. (1999). Gene expression profile of aging and its retardation by caloric restriction. Science 285, 1390-1393.

Lee, H., and Kimelman, D. (2002). A dominant-negative form of p63 is required for epidermal proliferation in zebrafish. Dev Cell 2, 607-616.

Liu, D., O'Connor, M.S., Qin, J., and Songyang, Z. (2004). Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J Biol Chem 279, 51338-51342.

Liu, T.X., Howlett, N.G., Deng, M., Langenau, D.M., Hsu, K., Rhodes, J., et al. (2003). Knockdown of zebrafish Fancd2 causes developmental abnormalities via p53-dependent apoptosis. Dev Cell 5, 903-914.

Lombard, D.B., Chua, K.F., Mostoslavsky, R., Franco, S., Gostissa, M., and Alt, F.W. (2005). DNA repair, genome stability, and aging. Cell 120, 497-512.

Love, D.R., Pichler, F.B., Dodd, A., Copp, B.R., and Greenwood, D.R. (2004). Technology for high-throughput screens: The present and future using zebrafish. Curr Opin Biotechnol 15, 564-571.

MacRae, C.A., and Peterson, R.T. (2003). Zebrafish-based small molecule discovery. Chem Biol 10, 901-908.

Mangel, M., and Abrahams, M.V. (2001). Age and longevity in fish, with consideration of the ferox trout. Exp Gerontol 36, 765-790.

Matsuoka, S., Rotman, G., Ogawa, A., Shiloh, Y., Tamai, K., and Elledge, S.J. (2000). Ataxia telangiectasia-mutated phosphory-lates Chk2 in vivo and in vitro. Proc Natl Acad Sci USA 97, 10389-10394.

Maya, R., Balass, M., Kim, S.T., Shkedy, D., Leal, J.F., Shifman, O., et al. (2001). ATM-dependent phosphorylation of Mdm2 on serine 395: Role in p53 activation by DNA damage. Genes Dev 15, 1067-1077.

McKinnon, P.J. (2004). ATM and ataxia telangiectasia. EMBO Rep

Meijer, A.H., Gabby Krens, S.F., Medina Rodriguez, I.A., He, S., Bitter, W., Ewa Snaar-Jagalska, B., and Spaink, H.P. (2004). Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40, 773-783.

Metcalfe, J.A., Parkhill, J., Campbell, L., Stacey, M., Biggs, P., Byrd, P.J., and Taylor, A.M. (1996). Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 13, 350-353.

Meyn, M.S. (1995). AtaxiA-Telangiectasia and cellular responses to DNA damage. Cancer Res 55, 5991-6001.

Meyne, J., Ratliff, R.L., and Moyzis, R.K. (1989). Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc Natl Acad Sci USA 86, 7049-7053.

Miller, B.M., Werner, T., Weier, H.U., and Nusse, M. (1992). Analysis of radiation-induced micronuclei by fluorescence in situ hybridization (FISH) simultaneously using telomeric and centromeric DNA probes. Radiat Res 131, 177-185.

Mitchell, J.R., Wood, E., and Collins, K. (1999). A telomerase component is defective in the human disease dyskeratosis congenita. Nature 402, 551-555.

Montes de Oca Luna, R., Wagner, D.S., and Lozano, G. (1995). Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203-206.

Motoyama, N., and Naka, K. (2004). DNA damage tumor suppressor genes and genomic instability. Curr Opin Genet Dev 14, 11-16.

Murphy, C.T., McCarroll, S.A., Bargmann, C.I., Fraser, A., Kamath, R.S., Ahringer, J., Li, H., and Kenyon, C. (2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277-283.

Naka, K., Tachibana, A., Ikeda, K., and Motoyama, N. (2004). Stress-induced premature senescence in hTERT-expressing ataxia telangiectasia fibroblasts. J Biol Chem 279, 2030-2037.

Nove, J., Little, J.B., Mayer, P.J., Troilo, P., and Nichols, W.W. (1986). Hypersensitivity of cells from a new chromosomal-breakage syndrome to DNA-damaging agents. Mutat Res 163, 255-262.

Oh, H., Wang, S.C., Prahash, A., Sano, M., Moravec, C.S., Taffet,

G.E., et al. (2003). Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci USA 100, 5378-5383.

Oikemus, S.R., McGinnis, N., Queiroz-Machado, J., Tukachinsky,

H., Takada, S., Sunkel, C.E., and Brodsky, M.H. (2004). Drosophila atm/telomere fusion is required for telomeric localization ofHP1 and telomere position effect. Genes Dev 18, 1850-1861.

Pandita, T.K. (2002). ATM function and telomere stability. Oncogene 21, 611-618.

Pandita, T.K., Pathak, S., and Geard, C.R. (1995). Chromosome end associations, telomeres and telomerase activity in ataxia telan-giectasia cells. Cytogenet Cell Genet 71, 86-93.

Parng, C. (2005). In vivo zebrafish assays for toxicity testing. Curr Opin Drug Discov Devel 8, 100-106.

Patnaik, B.K., Mahapatro, N., and Jena, B.S. (1994). Ageing in fishes. Gerontology 40, 113-132.

Patton, E.E., Widlund, H.R., Kutok, J.L., Kopani, K.R., Amatruda, J.F., Murphey, R.D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15, 249-254.

Peter, Y., Rotman, G., Lotem, J., Elson, A., Shiloh, Y., and Groner, Y. (2001). Elevated Cu/Zn-SOD exacerbates radiation sensitivity and hematopoietic abnormalities of Atm-deficient mice. Embo J 20, 1538-1546.

Pichler, F.B., Laurenson, S., Williams, L.C., Dodd, A., Copp, B.R., and Love, D.R. (2003). Chemical discovery and global gene expression analysis in zebrafish. Nat Biotechnol 21, 879-883.

Pletcher, S.D., Macdonald, S.J., Marguerie, R., Certa, U., Stearns, S.C., Goldstein, D.B., and Partridge, L. (2002). Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12, 712-723.

Poss, K.D., Keating, M.T., and Nechiporuk, A. (2003). Tales of regeneration in zebrafish. Dev Dyn 226, 202-210.

Poss, K.D., Nechiporuk, A., Hillam, A.M., Johnson, S.L., and Keating, M.T. (2002a). Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 129, 5141-5149.

Poss, K.D., Wilson, L.G., and Keating, M.T. (2002b). Heart regeneration in zebrafish. Science 298, 2188-2190.

Queiroz-Machado, J., Perdigao, J., Simoes-Carvalho, P., Herrmann, S., and Sunkel, C.E. (2001). tef: A mutation that causes telomere fusion and severe genome rearrangements in Drosophila melanogaster. Chromosoma110, 10-23.

Raya, A., Koth, C.M., Buscher, D., Kawakami, Y., Itoh, T., Raya, R.M., et al. (2003). Activation of Notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA 100 Suppl 1, 11889-11895.

Reliene, R., Fischer, E., and Schiestl, R.H. (2004). Effect of N-acetyl cysteine on oxidative DNA damage and the frequency of DNA deletions in atm-deficient mice. Cancer Res 64, 5148-5153.

Rentzsch, F., Kramer, C., and Hammerschmidt, M. (2003). Specific and conserved roles of TAp73 during zebrafish development. Gene 323, 19-30.

Reznick, D., Buckwalter, G., Groff, J., and Elder, D. (2001). The evolution of senescence in natural populations of guppies (Poecilia reticulata)'. A comparative approach. Exp Gerontol 36, 791-812.

Reznick, D.N. (1997). Life history evolution in guppies (Poecilia reticulata). Guppies as a model for studying the evolutionary biology of aging. Exp Gerontol 32, 245-258.

Reznick, D.N., Bryant, M.J., Roff, D., Ghalambor, C.K., and Ghalambor, D.E. (2004). Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095-1099.

Rodier, F., Kim, S.H., Nijjar, T., Yaswen, P., and Campisi, J. (2005). Cancer and aging. The importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37, 977-990.

Rotman, G., and Shiloh, Y. (1997). AtaxiA-Telangiectasia. Is ATM a sensor of oxidative damage and stress? Bioessays 19, 911-917.

Rubinstein, A.L. (2003). Zebrafish. From disease modeling to drug discovery. Curr Opin Drug Discov Devel 6, 218-223.

Ruggero, D., Grisendi, S., Piazza, F., Rego, E., Mari, F., Rao, P.H., et al. (2003). Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259-262.

Sancar, A., Lindsey-Boltz, L.A., Unsal-Kacmaz, K., and Linn, S. (2004). Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73, 39-85.

Satoh, S., Arai, K., and Watanabe, S. (2004). Identification of a novel splicing form of zebrafish p73 having a strong transcriptional activity. Biochem Biophys Res Commun 325, 835-842.

Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., et al. (1995a). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268, 1749-1753.

Savitsky, K., Sfez, S., Tagle, D.A., Ziv, Y., Sartiel, A., Collins, F.S., Shiloh, Y., and Rotman, G. (1995b). The complete sequence of the coding region of the ATM gene reveals similarity to cell cycle regulators in different species. Hum Mol Genet 4, 2025-2032.

Scott, S.P., Zhang, N., Khanna, K.K., Khromykh, A., Hobson, K., Watters, D., and Lavin, M.F. (1998). Cloning and expression of the ataxiA-Telangiectasia gene in baculovirus. Biochem Biophys Res Commun 245, 144-148.

Sherr, C.J., and DePinho, R.A. (2000). Cellular senescence. Mitotic clock or culture shock? Cell 102, 407-410.

Shieh, S.Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14, 289-300.

Shieh, S.Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91, 325-334.

Shiloh, Y. (1995). AtaxiA-Telangiectasia. Closer to unraveling the mystery. Eur J Hum Genet 3, 116-138.

Shiloh, Y. (2001). ATM and ATR. Networking cellular responses to DNA damage. Curr Opin Genet Dev 11, 71-77.

Shiloh, Y. (2003). ATM and related protein kinases. Safeguarding genome integrity. Nat Rev Cancer 3, 155-168.

Silva, E., Tiong, S., Pedersen, M., Homola, E., Royou, A., Fasulo, B., et al. (2004). ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr Biol 14, 1341-1347.

Smilenov, L.B., Morgan, S.E., Mellado, W., Sawant, S.G., Kastan, M.B., and Pandita, T.K. (1997). Influence of ATM function on telomere metabolism. Oncogene 15, 2659-2665.

Smith, P.J., and Paterson, M.C. (1980). Defective DNA repair and increased lethality in ataxia telangiectasia cells exposed to 4-nitroquinoline-1-oxide. Nature 287, 747-749.

Soares, H.D., Morgan, J.I., and McKinnon, P.J. (1998). Atm expression patterns suggest a contribution from the peripheral nervous system to the phenotype of ataxiA-Telangiectasia. Neuroscience 86, 1045-1054.

Sohal, R.S., and Weindruch, R. (1996). Oxidative stress, caloric restriction, and aging. Science 273, 59-63.

Sola, L., and Gornung, E. (2001). Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cyprini-formes): an overview. Genetica 111, 397-412.

Song, Y.H., Mirey, G., Betson, M., Haber, D.A., and Settleman, J. (2004). The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr Biol 14, 1354-1359.

Spring, K., Ahangari, F., Scott, S.P., Waring, P., Purdie, D.M., Chen, P.C., et al. (2002). Mice heterozygous for mutation in Atm, the gene involved in ataxiA-Telangiectasia, have heightened susceptibility to cancer. Nat Genet 32, 185-190.

Takao, N., Li, Y., and Yamamoto, K. (2000). Protective roles for ATM in cellular response to oxidative stress. FEBS Lett 472, 133-136.

Takeda, K., Kaisho, T., and Akira, S. (2003). Toll-like receptors. Annu Rev Immunol 21, 335-376.

Tanaka, H., Mendonca, M.S., Bradshaw, P.S., Hoelz, D.J., Malkas, L.H., Meyn, M.S., and Gilley, D. (2005). DNA damage-induced phosphorylation of the human telomere-associated protein TRF2. Proc Natl Acad Sci USA 102, 15539-15544.

Taniguchi, T., Garcia-Higuera, I., Xu, B., Andreassen, P.R., Gregory, R.C., Kim, S.T., et al. (2002). Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109, 459-472.

Taylor, A.M. (1998). What has the cloning of the ATM gene told us about ataxia telangiectasia? Int J Radiat Biol 73, 365-371.

Taylor, R.W., Barron, M.J., Borthwick, G.M., Gospel, A., Chinnery, P.F., Samuels, D.C., et al. (2003). Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112, 1351-1360.

Terman, A., and Brunk, U.T. (2004). Lipofuscin. Int J Biochem Cell Biol 36, 1400-1404.

Thacker, J. (1994). Cellular radiosensitivity in ataxiA-Telangiectasia. Int J Radiat Biol 66, S87-96.

Thisse, C., Neel, H., Thisse, B., Daujat, S., and Piette, J. (2000). The Mdm2 gene of zebrafish (Danio rerio): Preferential expression during development of neural and muscular tissues, and absence of tumor formation after overexpression of its cDNA during early embryogenesis. Differentiation 66, 61-70.

Tischkowitz, M.D., and Hodgson, S.V. (2003). Fanconi anaemia. J Med Genet 40, 1-10.

Toussaint, O., Medrano, E.E., and von Zglinicki, T. (2000). Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol 35, 927-945.

Traver, D., Winzeler, A., Stern, H.M., Mayhall, E.A., Langenau, D.M., Kutok, J.L., et al. (2004). Effects of lethal irradiation in zebrafish and rescue by hematopoietic cell transplantation. Blood 104, 1298-1305.

Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., et al. (2004). Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429, 417-423.

Tyner, S.D., Venkatachalam, S., Choi, J., Jones, S., Ghebranious, N., Igelmann, H., et al. (2002). p53 mutant mice that display early ageing-associated phenotypes. Nature 415, 45-53.

Unger, T., Juven-Gershon, T., Moallem, E., Berger, M., Vogt Sionov, R., Lozano, G., et al. (1999). Critical role for Ser20 of human p53 in the negative regulation of p53 by Mdm2. Embo J 18, 1805-1814.

Valdesalici, S., and Cellerino, A. (2003). Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci 270 Suppl 2, S189-191.

Varela, I., Cadinanos, J., Pendas, A.M., Gutierrez-Fernandez, A., Folgueras, A.R., Sanchez, L.M., Zhou, Z., Rodriguez, F.J., Stewart, C.L., Vega, J.A., et al. (2005). Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation. Nature 437, 564-568.

Verdun, R.E., Crabbe, L., Haggblom, C., and Karlseder, J. (2005). Functional human telomeres are recognized as DNA damage in g2 of the cell cycle. Mol Cell 20, 551-561.

Vogelstein, B. (1990). Cancer. A deadly inheritance. Nature 348, 681-682.

Vogelstein, B., and Kinzler, K.W. (1992). p53 function and dysfunction. Cell 70, 523-526.

Vogelstein, B., and Kinzler, K.W. (2004). Cancer genes and the pathways they control. Nat Med 10, 789-799.

Vogelstein, B., Lane, D., and Levine, A.J. (2000). Surfing the p53 network. Nature 408, 307-310.

von Zglinicki, T., Saretzki, G., Ladhoff, J., d'Adda di Fagagna, F., and Jackson, S.P. (2005). Human cell senescence as a DNA damage response. Mech Ageing Dev 126, 111-117.

Wahl, G.M., and Carr, A.M. (2001). The evolution of diverse biological responses to DNA damage: Insights from yeast and p53. Nat Cell Biol 3, E277-286.

Watters, D.J. (2003). Oxidative stress in ataxia telangiectasia. Redox Rep 8, 23-29.

Wienholds, E., Schulte-Merker, S., Walderich, B., and Plasterk, R.H. (2002). Target-selected inactivation of the zebrafish rag1 gene. Science 297, 99-102.

Wienholds, E., van Eeden, F., Kosters, M., Mudde, J., Plasterk, R.H., and Cuppen, E. (2003). Efficient target-selected mutagen-esis in zebrafish. Genome Res 13, 2700-2707.

Willingale-Theune, J., Schweiger, M., Hirsch-Kauffmann, M., Meek, A.E., Paulin-Levasseur, M., and Traub, P. (1989). Ultrastructure of Fanconi anemia fibroblasts. J Cell Sci 93 (Pt 4), 651-665.

Wolf, F.I., Torsello, A., Covacci, V., Fasanella, S., Montanari, M., Boninsegna, A., and Cittadini, A. (2002). Oxidative DNA damage as a marker of aging in WI-38 human fibroblasts. Exp Gerontol 37, 647-656.

Wright, W.E., Shay, J.W., and Piatyszek, M.A. (1995). Modifications of a telomeric repeat amplification protocol (TRAP) result in increased reliability, linearity and sensitivity. Nucleic Acids Res 23, 3794-3795.

Xu, Y., Ashley, T., Brainerd, E.E., Bronson, R.T., Meyn, M.S., and Baltimore, D. (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10, 2411-2422.

Yeh, J.R., and Crews, C.M. (2003). Chemical genetics: Adding to the developmental biology toolbox. Dev Cell 5, 11-19.

Zhang, X., Li, J., Sejas, D.P., and Pang, Q. (2005). The ATM/p53/ p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells. J Biol Chem 280, 19635-19640.

Zhdanova, I.V., Wang, S.Y., Leclair, O.U., and Danilova, N.P. (2001). Melatonin promotes sleep-like state in zebrafish. Brain Res 903, 263-268.

Ziv, S., Brenner, O., Amariglio, N., Smorodinsky, N.I., Galron, R., Carrion, D.V., Zhang, W., Sharma, G.G., Pandita, R.K., Agarwal, M., et al. (2005). Impaired genomic stability and increased oxidative stress exacerbate different features of Ataxia-telagiectasia. Hum Mol Genet 14, 2929-2943.

Zon, L.I., and Peterson, R.T. (2005). In vivo drug discovery in the zebrafish. Nat Rev Drug Discov 4, 35-44.

Zou, S., Meadows, S., Sharp, L., Jan, L.Y., and Jan, Y.N. (2000). Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97, 13726-13731.

Was this article helpful?

0 0
The Mediterranean Diet Meltdown

The Mediterranean Diet Meltdown

Looking To Lose Weight But Not Starve Yourself? Revealed! The Secret To Long Life And Good Health Is In The Foods We Eat. Download today To Discover The Reason Why The Mediterranean Diet Will Help You Have Great Health, Enjoy Life And Live Longer.

Get My Free Ebook


Post a comment