1. S. Haykin. Adaptive Filter Theory, 3rd ed. Prentice Hall, 1996.

2. A. Papoulis. Signal Analysis. McGraw-Hill, 1977.

3. J. S. Lim. Two-Dimensional Signal and Image Processing. Prentice Hall, 1980.

4. G. H. Granlund and H. Knutsson. Signal Processing for Computer Vision. Kluwer Academic Publishers, 1995.

5. W. F. Schriber. Wirephoto quality improvement by unsharp masking. J Pattern Recognition, 2, 117-121 (1970).

6. A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 1965.

7. C. W. Helstrom. Image restoration by the methods of least squares. J. Opt. Soc. Amer. 57(3), 297-303 (1967).

8. W. K. Pratt. Digital Image Processing. New York: Wiley, 1978.

9. B. R. Hunt. The application of constrained least squares estimation to image restoration by digital computer. IEEE Trans. Comput. C-22, 805-812 (1973).

10. G. L. Anderson and A. N. Netravali. Image restoration based on a subjective criteria. IEEE Trans. Sys. Man. Cybern, SMC-6, 845-853 (1976).

11. V. K. Ingle and J. W. Woods. Multiple model recursive estimation of images. In Proc. IEEE Conf. Acoust., Speech, Signal Processing, pp. 642-645 (1979).

12. J. F. Abramatic and L. M. Silverman. Nonlinear restoration of noisy images. IEEE Tramactiom o" Patter" A"alysis a"d Machirn I"tellige"ce, 4(2), 141-149 (1982).

13. M. Nagao and T. Matsuyama. Edge preserving smoothing. Computer Graphics Image Proc. 9, 394-407 (1979).

14. J. S. Lee. Digital image enhancement and noise filtering by local statistics. IEEE Tra"sactio"s o" Patter" A"alysis a"d Machi«e I"tellige«ce, 2, 165-168 (1980).

15. J. S. Lim. Image restoration by short space spectral subtraction. IEEE Tra«s. Acoust. Speech Sig. Proc. 28, 191-197 (1980).

16. H. Knutsson, R. Wilson, and G. H. Granlund. Anisotropic non-stationary image estimation and its applications — part I: Restoration of noisy images. IEEE Tra«sactio«s o" Commu«icatio«s COM-31(3), 388-397 (1983).

17. D. T. Kuan, A. A. Sawchuck, T. C. Strand, and P. Chavel. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Tra«sactio«s o" Patter" A"alysis a«d Machi«e I"tellige«ce 7, 165-177 (1985).

18. A. C. Bovik, T. S. Huang, and D. C. Munson, Jr. Edge-sensitive image restoration using order-constraint least squares method. IEEE Tra"s. Acoust. Speech Sig. Proc. ASSP-33, 1253-1263 (1985).

19. K. Conradsen and G. Nilsson. Data dependent filters for edge enhancement of landsat images. Computer Visio", Graphics, a"d Image Processi"g, 38, 101-121 (1987).

20. H. Soltanianzadeh, J. P. Windham and A. E. Yagle. A multidimensional nonlinear edge-preserving filter for magnetic resonance image restoration. IEEE Tra"sactio"s o" Medical Imagi"g 4(2), 147-161 (1995).

21. X. You and G. Crebbin. A robust adaptive estimator for filtering noise in images. IEEE Tra"sactio"s o" Image Processi"g 4(5), 693-699 (1995).

22. J. A. S. Centeno and V. Haertel. An adaptive image enhancement algorithm. Pattern Recognition 30(7), 1183— 1189 (1997).

23. B. Fischi and E. Schwartz. Adaptive nonlocal filtering: a fast alternative to anisotropic diffusion for image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(1), 42—48 (1999).

24. G. E. Backus and F. Gilbert. The resolving power of gross earth data. Geophysical Journal of the Royal Astronomical Society 16, 169—205 (1968).

25. Ling Guang and Rabab K. Ward. Restoration of randomly blurred images by the Wiener filter. IEEE Trans Acoustics, Speech, and Signal Processing 37(4), 589—592 (1989).

26. W. T. Freeman and E. H. Adelson. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-13(9), 891—906 (1991).

27. H. Knutsson. Representing local structure using tensors. In The 6th Scandinavian Conference on Image Analysis, pp. 244—251, Oulu, Finland, June 1989.

28. H. Knutsson and G. H. Granlund. Fourier domain design of line and edge detectors. In Proceedings of the 5th International Conference on Pattern Recognition, Miami, FL, December 1980.

29. C.-F. Westin, S. Warfield, A. Bhalerao, L. Mui, J. Richolt, and R. Kikinis. Tensor controlled local structure enhancement of CT images for bone segmentation. In MICCAI'98, First Int Conf on Medical Image Computing and Computer-Assisted Intervention, 1998, Lecture Notes in Computer Science 1496, pp. 1205—1212, Springer Verlag, 1998.

30. C.-F Westin, J. Richolt, V. Moharir and R. Kikinis. Affine adaptive filtering of CT data. Medical Image Analysis 4(2), 1—21 (2000).

Was this article helpful?

0 0

Post a comment