Bi2

4S = 4L

}

?

A. p. = Andrographis paniculata; T. br. = Taxus brevifolia; T. ba. = Taxus baccata; C. v. = Cortinarius violaceus; B. b. = Bacillus brevis Vm4 a Involvement of B12 is unlikely bAn 15 N label in tyrosine is lost in the product /^-tyrosine laceus. These enzymes are unlikely to use B12. These enzymes have, on the other hand, not yet been isolated nor investigated in detail, so their classification remains speculative. The tyrosine 2,3-aminomutase of Bacillus brevis Vm4 differs fundamentally from all the aminomutases mentioned and its properties are more like those of an ammonia lyase.

In recent years rapid progress was made in the study of aminomutase enzymes at the genetic level and in heterologous expression of aminomutase genes in E. coli. So far, lysine 2,3-aminomutase, d-ornithine 4,5-aminomutase and b-lysine 5,6-aminomutase have been cloned and overexpressed. By this method large amounts of enzymes become available. This will facilitate the detailed study of the three-dimensional structure and the mode of action of the enzymes. Bioinformatic methods are already used to identify new aminomutases and will be applied increasingly in the future [86]. The detection of biosynthetic gene clusters is also revealing the existence of new aminomutases - the gene cluster for the biosynthesis of the endiyne antibiotic C-1027 in Streptomyces globisporus was recently detected. According to sequence information the 3-chloro-b-dopa moiety in C-1027 is generated by the gene sgcC5 that was assigned to function as an aminomutase [87].

Dedication

Dedicated to Professor Wolfgang Steglich on the occasion of his 70th birthday. Acknowledgment

We are grateful to Dr Norbert Arnold, Dr Marc Stadler, Dr Thomas Koch, and Professor Dr Tin-Wein Yu for many valuable hints and suggestions, and to the Alexander von Humboldt-Stiftung for financial support by providing a Feodor-Lynen-Stipendium to P.S. and F.v.N.

References

1 Review: O. W. Griffith, Annu. Rev. Biochem. 1986, 55, 855-878.

Fernandez-Saiguero, F. J. Gonzalez, Genomics, 1998, 51, 391-400.

2 K. Fink, R. E. Cline, R. B. Henderson, R. M. Fink, J. Biol. Chem. 1956, 221, 425-433.

7 D. Gani, D. W. Young, J. Chem Soc. Perkin Trans I, 1985, 1355-1362.

4 T. Shiotani, G. Weber, J. Biol. Chem. 1981, 256, 219-224.

3 P. Fritzson, A. Pihl, J. Biol. Chem. 1957, 226, 229-235.

8 M. Kikugawa, M. Kaneko, S. Fujimoto-Sakata, M. Maeda, K. Kawasaki, T. Takagi, N. Tamaki, Eur. J. Biochem. 1994, 219, 393-399.

5 Z.-H. Lu, R. Zhang, R. B. Diasio, J. Biol. Chem. 1992, 267, 1710217109.

9 K. Matsuda, S. Sakata, M. KAneko, N. Hamajima, M. Nonaka, M. Sasaki, N. Tamaki, Biochim. Biophys. Acta, 1996, 1307, 140-144.

6 X. Wei, G. ElizonDo, A. Sapone, H. L. Mcleod, H. RAunio, P.

10 M. M. Matthews, T. W. Traut, J. Biol. Chem. 1987, 262, 7232-7237.

11 N. TAMAKI, N. MlZUTANI, M. KlKUGAWA, S. FujIMOTÜ, C. MlZOTA,

12 J. E. Cronan Je, J. Bacteriol. 1980, 141, 1291-1297.

13 J. M. Williamson, G. M. Brown, J. Biol. Chem. 1979, 254, 8074-8082.

14 M. K. Ramjee, U. Genschel, C. Abell, A. G. Smith, Biochem. J. 1997, 323, 661-669.

15 A. Albert, V. Dhanara;, U. Genschel, G. Khan, M. K. Ramjee, R. Pulido, B. L. Sibanda, F. von Delft, M. Witty, T. L. Blundell, A. G. Smith, C. Abell, Nat. Struct. Biol. 1998, 5, 289-293.

16 R. Zheng, J. S. Blanchard, Biochemistry 2001, 40, 12904-12912.

17 W. H. White, P. L. Gunyuzlu, J. H. Toyn, J. Biol. Chem. 2001, 276, 1079410800.

18 Review: T. C. Stadtman, Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 38, 413-448.

19 V. Zappia, H. A. Barker, Biochim. Biophys. Acta, 1970, 207, 505-513.

20 R. C. Bray, T. C. Stadtman, J. Biol. Chem. 1968, 243, 381-385.

21 L. Tsai, T. C. Stadtman, Arch. Biochem. Biophys. 1968, 125, 210-225.

22 Review: P. A. Frey, Curr. Opin. Chem. Biol. 1997, 1, 347-356.

23 Review: P. A. Frey, S. J. Booker, Adv. Protein Chem. 2001, 58, 1-46.

24 Review: P. A. Frey, Annu. Rev. Biochem. 2001, 70, 121-148.

25 R. N. Costilow, O. M. Rochovansky, H. A. Barker, J. Biol. Chem. 1966, 241, 1573-1580.

26 T. P. Chirpich, V. Zappia, R. N. Costilow, H. A. Barker, J. Biol. Chem. 1970, 245, 1778-1789.

27 F. J. Ruzicka, K. W. Lieder, P. A. Frey, J. Bacteriol. 2000, 182, 469476.

1991, 266, 7651-7655.

29 R. M. Petrovich, F. J. Ruzicka, G. H. Reed, P. A. Frey, Biochemistry,

1992, 31, 10774-10781.

30 D. Chen, F. J. Ruzicka, P. A. Frey, Biochem. J. 2000, 348, 539-549.

31 D. Chen, P. A. Frey, Biochemistry 2001, 40, 596-602.

32 D. J. Aberhart, S. J. Gould, H.-J. Lin, T. K. Thiruvengadam, B. H. Weiller, J. Am. Chem. Soc. 1983, 105, 5461-5470.

33 P. A. Frey, M. D. Ballinger, G. H. Reed, Biochem. Soc. Trans. 1988, 26, 304-310.

35 J. Baraniak, M. L. Moss, P. A. Frey, J. Biol. Chem. 1989, 264, 1357-1360.

36 P. A. Frey, G. H. Reed, Arch. Biochem. Biophys. 2000, 382, 6-14.

37 M. D. Ballinger, G. H. Reed, P. A. Frey, Biochemistry 1992, 31, 949-953.

38 M. D. Ballinger, P. A. Frey, G. H. Reed, Biochemistry 1992, 31, 1078210789.

39 M. D. Ballinger, P. A. Frey, G. H. Reed, R. LoBrutto, Biochemistry 1995, 34, 10086-10093.

40 W. Wu, K. W. Lieder, G. H. Reed, P. A. Frey, Biochemistry 1995, 34, 1053210537.

41 W. Wu, S. Booker, K. W. Lieder, V. Bandarian, G. H. Reed, P. A. Frey, Biochemistry 2000, 39, 9561-9570.

42 O. T. Magnusson, G. H. Reed, P. A. Frey, Biochemistry 2001, 40, 77737782.

43 I. Freer, G. Pedrocchi-Fantoni, D. J. Picken, K. H. Overton, J. Chem. Soc. Chem. Commun. 1981, 80-82.

44 J. M. Poston, J. Biol. Chem. 1976, 251, 1859-1863.

46 J. M. Poston, Phytochemistry 1978, 17, 401-402.

47 S. P. Stabler, J. Lindenbaum, R. H. Allen, J. Biol. Chem. 1988, 263, 55815588.

48 D. J. Aberhart, Anal. Biochem. 1988, 169, 350-355.

49 H. Yonehara, N. Otake, Tetrahedron Lett. 1966, 32, 3785-3791.

50 W. J. McGahren, G. O. Morton, M. P. Kunstmann, G. A. Ellestad, J. Org. Chem. 1977, 42, 1282-1286.

51 P. C. Prabhakaran, N.-T. Woo, P. S. Yorgey, S. J. Gould, J. Am. Chem. Soc. 1988, 110, 5785-5791.

52 P. C. Prabhakaran, N.-T. Woo, P. S. Yorgey, S. J. Gould, Tetrahedron Lett. 1986, 27, 3815-3818.

53 P. E. Fleming, U. Mocek, H. G. Floss, J. Am. Chem. Soc. 1993, 115, 805-807.

54 P. E. Fleming, A. R. Knaggs, X.-G. He, U. Mocek, H. G. Floss, J. Am. Chem. Soc. 1994, 116, 4137-4138.

55 K. D. Walker, H. G. Floss, J. Am. Chem. Soc. 1998, 120, 5333-5334.

56 E. Graf, A. Kirfel, G.-J. Wolff, E. Breitmaier, Liebigs Ann. Chem. 1982, 376-381.

57 L. Ettouati, A. Ahond, C. Poupat, P. Potier, J. Nat. Prod. 1991, 54, 14551458.

58 R. V. Platt, C. T. Opie, E. Haslam, Phytochemistry 1984, 23, 2211-2217.

59 S. G. Davies, J. Dupont, R. J. C. Easton, Tetrahedron: Asymmetry 1990, 1, 279-280.

60 T. P. Hettinger, L. C. Craig, Biochemistry 1970, 9, 1224-1232.

61 Z. Kurylo-Borowska, T. Abrahamsy, Biochim. Biophys. Acta, 1972, 264, 110.

63 F. von Nussbaum, P. Spiteller, M. Rüth, W. Steglich, G. Wanner, B. Gamblin, L. Stievano, F. E. Wagner, Angew. Chem. Int. Ed. 1998, 37, 32923295.

64 P. Spiteller, M. Rüth, F. von Nussbaum, W. Steglich, Angew. Chem. Int. Ed. 2000, 39, 2754-2756.

65 J. R. Roth, J. G. Lawrence, T. A. Bobik, Annu. Rev. Microbiol. 1996, 50, 137-181.

66 Review: P. A. Frey, C. H. Chang, Aminomutases, in Chemistry and Biochemistry ofB12, R. Banerjee, ed., Wiley-Interscience, New York, 1999, pp. 835-857.

67 Review: J. J. Baker, T. C. Stadtman, Aminomutases, in B12: Biochemistry and Medicine, Vol. 2, D. Dolphin, ed., Wiley-Interscience, New York, 1982, pp. 203-232.

68 J. J. Baker, C. van der Drift, T. C. Stadtman, Biochemistry 1973, 12, 1054-1063.

69 C. H. Chang, P. A. Frey, J. Biol. Chem. 2000, 275, 106-114.

70 K.-H. Tang, A. Harms, P. A. Frey, Biochemistry 2002, 41, 8767-8776.

71 F. Kunz, J. Retey, D. Arigoni, L. Tsai, T. C. Stadtman, Helv. Chim. Acta 1978, 61, 1139-1145.

72 J. REtey, F. Kunz, D. Arigoni, T. C. Stadtman, Helv. Chim. Acta 1978, 61, 2989-2998.

73 K.-H. Tang, C. H. Chang, P. A. Frey, Biochemistry 2001, 40, 5190-5199.

74 C. G. D. Morley, T. C. Stadtman, Biochemistry 1971, 10, 2325-2329.

75 C. G. D. Morley, T. C. Stadtman, Biochemistry 1972, 11, 600-605.

76 S. D. Wetmore, D. M. Smith, L. Radom, J. Am. Chem. Soc. 2000, 122, 10208-10209.

77 S. D. Wetmore, D. M. Smith, L. Radom, J. Am. Chem. Soc. 2001, 123, 8678-8689.

78 R. Somack, R. N. Costilow, Biochemistry 1973, 12, 2597-2604.

79 Y. Tsuda, H. C. Friedmann, J. Biol. Chem. 1970, 245, 5914-5926.

80 H.-P. CHEN, C.-F. LIN, Y.-J. LEE, S.-S. Tsay, S.-H. Wu, J. Bacteriol. 2000, 182, 2052-2054.

81 H.-P. CHEN, S.-H. WU, Y.-L. LIN, C.-M. Chen, S.-S. Tsay, J. Biol. Chem. 2001, 276, 44744-44750.

82 D. Guianvarc'h, D. Florentin, B. Tse Sum Bui, F. Nunzi, A. Marquet, Biochem. Biophys. Res. Commun. 1997, 236, 402-406.

83 J. Knappe, H. P. Blaschkowsky, P. Grobner, T. Schmitt, Eur. J. Biochem, 1974, 50, 253-263.

84 J. Knappe, S. Elbert, M. Frey, A. F. V. Wagner, Biochem. Soc. Trans. 1993, 21, 731-734.

85 P. Reichard, Science, 1993, 260, 1773-1777.

86 H. J. Sofia, G. Chen, B. G. Hetzler, J. F. Reyes-Spindola, N. E. Miller, Nucl. Acid Res. 2001, 29, 1097-1106.

87 W. Liu, S. D. Christenson, S. Standage, B. Shen, Science, 2002, 297, 1170-1173.

Part 2

Non-Covalent intermolecular interactions

0 0

Post a comment