References

Parenting Children With Asperger's And High-functioning Autism

Autism Support for Parents

Get Instant Access

1. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: clinical significance and distribution of breakpoints. Am J Hum Genet 1991;49:995-1013.

2. Buckton KE, Spowart G, Newton MS, Evans HJ. Forty four probands with an additional "marker" chromosome. Hum Genet 1985;69:353-370.

3. Gravholt CH, Friedrich U. Molecular cytogenetic study of supernumerary marker chromosomes in an unselected group of children. Am J Med Genet 1995;56:106-111.

4. Crolla JA, Youings SA, Ennis S, Jacobs PA. Supernumerary marker chromosomes in man: parental origin, mosaicism and maternal age revisited. Eur J Hum Genet 2005;13:154-160.

5. Haddad BR, Schrock E, Meck J, et al. Identification of de novo chromosomal markers and derivatives by spectral karyotyping. Hum Genet 1998;103:619-625.

6. Nietzel A, Rocchi M, Starke H, et al. A new multicolor-FISH approach for the characterization of marker chromosomes: centromere-specific multicolor-FISH (cenM-FISH). Hum Genet 2001;108:199-204.

7. Starke H, Nietzel A, Weise A, et al. Small supernumerary marker chromosomes (SMCs): genotype-phenotype correlation and classification. Hum Genet 2003;114:51-67.

8. Crolla JA. FISH and molecular studies of autosomal supernumerary marker chromosomes excluding those derived from chromosome 15: II. Review of the literature. Am J Med Genet 1998;75:367-381.

9. McTaggart KE, Budarf ML, Driscoll DA, Emanuel BS, Ferreira P, McDermid HE. Cat eye syndrome chromosome breakpoint clustering: identification of two intervals also associated with 22q11 deletion syndrome breakpoints. Cytogenet Cell Genet 1998;81:222-228.

10. Depinet TW, Zackowski JL, Earnshaw WC, et al. Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA. Hum Mol Genet 1997;6:1195-1204.

11. Amor DJ, Choo KH. Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet 2002;71:695-714.

12. Van Dyke DL, Weiss L, Logan M, Pai GS. The origin and behavior of two isodicentric bisatellited chromosomes. Am J Hum Genet 1997;29:294-300.

13. Schreck RR, Breg WR, Erlanger BF, Miller OJ. Preferential derivation of abnormal human G-group-like chromosomes from chromosome 15. Hum Genet 1997;36:1-12.

14. Babcock M, Pavlicek A, Spiteri E, et al. Shuffling of genes within low-copy repeats on 22q11 (LCR22) by Alumediated recombination events during evolution. Genome Res 2003;13:2519-2532.

15. Emanuel BS, Shaikh TH. Segmental duplications: an 'expanding' role in genomic instability and disease. Nat Rev Genet 2001;2:791-800.

16. Wandstrat AE, Schwartz S. Isolation and molecular analysis of inv dup(15) and construction of a physical map of a common breakpoint in order to elucidate their mechanism of formation. Chromosoma 2000;109:498-505.

17. Spinner NB, Zackai E, Cheng SD, Knoll JH. Supernumerary inv dup(15) in a patient with Angelman syndrome and a deletion of 15q11-q13. Am J Med Genet 1995;57:61-65.

18. Robinson WP, Wagstaff J, Bernasconi F, et al. Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome. J Med Genet 1993;30:756-760.

19. Christian SL, Fantes JA, Mewborn SK, Huang B, Ledbetter DH. Large genomic duplicons map to sites of instability in the Prader- Willi/Angelman syndrome chromosome region (15q11-q13). Hum Mol Genet 1999;8:1025-1037.

20. Amos-Landgraf JM, Ji Y, Gottlieb W, et al. Chromosome breakage in the Prader-Willi and Angelman syndromes involves recombination between large, transcribed repeats at proximal and distal breakpoints. Am J Hum Genet 1999;65:370-386.

21. Gunay-Aygun M, Schwartz S, Heeger S, O'Riordan MA, Cassidy SB. The changing purpose of Prader-Willi syndrome clinical diagnostic criteria and proposed revised criteria. Pediatrics 2001;108:E92.

22. Clayton-Smith J, Laan L. Angelman syndrome: a review of the clinical and genetic aspects. J Med Genet 2003;40:87-95.

23. Lee S, Walker CL, Wevrick R. Prader-Willi syndrome transcripts are expressed in phenotypically significant regions of the developing mouse brain. Gene Expr Patterns 2003;3:599-609.

24. Jong MT, Gray TA, Ji Y,et al. A novel imprinted gene, encoding a RING zinc-finger protein, and overlapping antisense transcript in the Prader-Willi syndrome critical region. Hum Mol Genet 1999;8:783-793.

25. MacDonald HR, Wevrick R. The necdin gene is deleted in Prader-Willi syndrome and is imprinted in human and mouse. Hum Mol Genet 1997;6:1873-1878.

26. Gray TA, Saitoh S, Nicholls RD. An imprinted, mammalian bicistronic transcript encodes two independent proteins. Proc Natl Acad Sci USA 1999;96:5616-5621.

27. Runte M, Huttenhofer A, Gross S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF-SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet 2001;10:2687-2700.

28. Bolton PF, Dennis NR, Browne CE, et al. The phenotypic manifestations of interstitial duplications of proximal 15q with special reference to the autistic spectrum disorders. Am J Med Genet 2001;105:675-685.

29. Cook EH Jr, Lindgren V, Leventhal BL, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997;60:928-934.

30. Mignon C, Malzac P, Moncla A, et al. Clinical heterogeneity in 16 patients with inv dup 15 chromosome: cytogenetic and molecular studies, search for an imprinting effect. Eur J Hum Genet 1996;4:88-100.

31. Maraschio P, Zuffardi O, Bernardi F, et al. Preferential maternal derivation in inv dup(15): analysis of eight new cases. Hum Genet 1981;57:345-350.

32. Chai JH, Locke DP, Greally JM, et al. Identification of four highly conserved genes between breakpoint hotspots BP1 and BP2 of the Prader-Willi/Angelman syndromes deletion region that have undergone evolutionary transposition mediated by flanking duplicons. Am J Hum Genet 2003;73:898-925.

33. Huang B, Crolla JA, Christian SL, et al. Refined molecular characterization of the breakpoints in small inv dup(15) chromosomes. Hum Genet 1997;99:11-17.

34. Wandstrat AE, Leana-Cox J, Jenkins L, Schwartz S. Molecular cytogenetic evidence for a common breakpoint in the largest inverted duplications of chromosome 15. Am J Hum Genet 1998;62:925-936.

35. Wang NJ, Liu D, Parokonny AS, Schanen NC. High-resolution molecular characterization of 15q11-q13 rearrangements by array comparative genomic hybridization (array CGH) with detection of gene dosage. Am J Hum Genet 2004;75:267-281.

36. Mann SM, Wang NJ, Liu DH, et al. Supernumerary tricentric derivative chromosome 15 in two boys with intractable epilepsy: another mechanism for partial hexasomy. Hum Genet 2004;115:104-111.

37. Morrow B, Goldberg R, Carlson C, et al. Molecular definition of the 22q11 deletions in velo-cardio-facial syndrome. Am J Hum Genet 1995;56:1391-1403.

38. Kirkels VG, Hustinx TW, Scheres JM. Habitual abortion and translocation (22q;22q): unexpected transmission from a mother to her phenotypically normal daughter. Clin Genet 1980;18:456-461.

39. Palmer CG, Schwartz S, Hodes ME. Transmission of a balanced homologous t(22q;22q) translocation from mother to normal daughter. Clin Genet 1980;17:418-422.

40. Schinzel AA, Basaran S, Bernasconi F, Karaman B, Yuksel-Apak M, Robinson WP. Maternal uniparental disomy 22 has no impact on the phenotype. Am J Hum Genet 1994;54:21-24.

41. Schinzel A, Schmid W, Fraccaro M, et al. The "cat eye syndrome": dicentric small marker chromosome probably derived from a no.22 (tetrasomy 22pter to q11) associated with a characteristic phenotype. Report of 11 patients and delineation of the clinical picture. Hum Genet 1981;57:148-158.

42. Berends MJ, Tan-Sindhunata G, Leegte B, van Essen AJ. Phenotypic variability of Cat-Eye syndrome. Genet Couns 2001;12:23-34.

43. Rosias PR, Sijstermans JM, Theunissen PM, et al. Phenotypic variability of the cat eye syndrome. Case report and review of the literature. Genet Couns 2001;12:273-282.

44. Luleci G, Bagci G, Kivran M, Luleci E, Bektas S, Basaran S. A hereditary bisatellite-dicentric supernumerary chromosome in a case of cat-eye syndrome. Hereditas 1989;111:7-10.

45. Urioste M, Visedo G, Sanchis A, et al. Dynamic mosaicism involving an unstable supernumerary der(22) chromosome in cat eye syndrome. Am J Med Genet 1994;49:77-82.

46. Magenis RE, Sheehy RR, Brown MG, et al. Parental origin of the extra chromosome in the cat eye syndrome: evidence from heteromorphism and in situ hybridization analysis. Am J Med Genet 1988;29:9-19.

47. Tupler R, Hoeller A, Pezzolo A, Maraschio P. Maternal derivation of inv dup (22) and clinical variation in cat-eye syndrome. Ann Genet 1994;37:153-155.

48. McDermid HE, Morrow BE. Genomic disorders on 22q11. Am J Hum Genet 2002;70:1077-1088.

49. Edelmann L, Pandita RK, Spiteri E, et al. A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 1999;8:1157-1167.

50. Crolla JA, Howard P, Mitchell C, Long FL, Dennis NR. A molecular and FISH approach to determining karyotype and phenotype correlations in six patients with supernumerary marker(22) chromosomes. Am J Med Genet 1997;72:440-447.

51. Mears AJ, el-Shanti H, Murray JC, McDermid HE, Patil SR. Minute supernumerary ring chromosome 22 associated with cat eye syndrome: further delineation of the critical region. Am J Hum Genet 1995;57: 667-673.

52. Footz T.K, Brinkman-Mills P, Banting GS, et al. Analysis of the cat eye syndrome critical region in humans and the region of conserved synteny in mice : a search for candidate genes at or near the human chromosome 22 pericentromere. Genome Res 2001;11:1053-1070.

53. Riazi MA, Brinkman-Mills P, Nguyen T, et al. The human homolog of insect-derived growth factor, CECR1, is a candidate gene for features of cat eye syndrome. Genomics 2000;64:277-285.

54. Maier SA, Podemski L, Graham SW, McDermid HE, Locke J. Characterization of the adenosine deaminase-related growth factor (ADGF) gene family in Drosophila. Gene 2001;280:27-36.

55. Banting GS, Barak O, Ames TM, et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet 2005;14:513-524.

56. Ensenauer RE, Adeyinka A, Flynn HC, et al. Microduplication 22q11.2, an emerging syndrome: clinical, cytogenetic, and molecular analysis of thirteen patients. Am J Hum Genet 2003;73:1027-1040.

57. Reiss JA, Weleber RG, Brown MG, Bangs CD, Lovrien EW, Magenis RE. Tandem duplication of proximal 22q: a cause of cat-eye syndrome. Am J Med Genet 1985;20:165-171.

58. Knoll JH, Asamoah A, Pletcher BA, Wagstaff J. Interstitial duplication of proximal 22q: phenotypic overlap with cat eye syndrome. Am J Med Genet 1995;55:221-224.

59. Lindsay EA, Shaffer LG, Carrozzo R, Greenberg F, Baldini A. De novo tandem duplication of chromosome segment 22q11-q12: clinical, cytogenetic, and molecular characterization. Am J Med Genet 1995;56:296-299.

60. Brondum-Nielsen K, Mikkelsen M. A 10-year survey, 1980-1990, of prenatally diagnosed small supernumerary marker chromosomes, identified by FISH analysis. Outcome and follow-up of 14 cases diagnosed in a series of 12,699 prenatal samples. Prenat Diagn 1995;15:615-619.

61. Engelen JJ, Tuerlings JH, Albrechts JC, Schrander-Stumpel CT, Hamers AJ, De Die-Smulders CE. Prenatally detected marker chromosome identified as an i(22)(p10) using (micro)FISH. Genet Couns 2000;11:13-17.

Was this article helpful?

0 0
Aspergers Answers Revealed

Aspergers Answers Revealed

Learn How to Help, Understand amp Cope with your Aspergers Child from a UK Chartered Educational Psychologist. Before beginning any practice relating to Aspergers it is highly recommended that you first obtain the consent and advice of a qualified health,education or social care professional.

Get My Free Ebook


Post a comment