The Elegantly Stable Double Helix Ice Mans DNA

DNA, with its gentle double-stranded spiral, is among the most elegant of all biological molecules. But the double helix is not just a beautiful structure; it also gives DNA incredible stability and permanence, as illustrated by the story of Ice Man.

On September 19, 1991, German tourists hiking in the Tyrolean Alps near the border between Austria and Italy spotted a corpse trapped in glacial ice. A copper ax, dagger, bow, and quiver with 14 arrows were found alongside the body. Not realizing its antiquity, local residents made several crude and unsuccessful attempts to free the body from the ice. After 4 days, a team of forensic experts arrived to recover the body and transport it to the University of Innsbruck. There the mummified corpse, known as Ice Man, was refrozen and subjected to scientific study.

Radiocarbon dating indicates that Ice Man is approximately 5000 years old. Recent evidence from the South Tyrol Museum of Archeology has led to the conclusion that Ice Man was shot in the chest with an arrow and died soon thereafter. The body became dehydrated in the cold high-altitude air, was covered with snow that turned into ice, and remained frozen for the next 5000 years.

Some experts challenged Ice Man's origin, suggesting that he was a South American mummy who had been planted at the glacier site in an elaborate hoax. To establish his authenticity and ethnic origin, scientists removed eight samples of muscle, connective tissue, and bone from his left hip. Under sterile conditions, the investigators extracted DNA from the samples and used the polymerase chain reaction (see Chapter 18) to amplify a very small region of his mitochondrial DNA a millionfold. They determined the base sequence of this amplified DNA and compared it with mitochondrial sequences from present-day humans.

This analysis revealed that Ice Man's mitochondrial DNA sequences resemble those found in present-day Europeans living north of the Alps and are quite different from those of sub-Saharan Africans, Siberians, and Native Americans. Together, radiocarbon dating, the artifacts, and the DNA analysis all indicate that Ice Man was a Neolithic hunter who died while attempting to cross the Alps 5000 years ago. That some of Ice Man's DNA persists and faithfully carries his genetic instructions even after the passage of 5000 years is testimony to the remarkable stability of the double helix. Even more ancient DNA has been isolated from the fossilized bones of Neanderthals that are at least 30,000 years old.

This chapter focuses on how DNA was identified as the source of genetic information and how this elegant molecule encodes the genetic instructions. We begin by considering the basic requirements of the genetic material and the history of our understanding of DNA — how its relation to genes was uncovered and how its structure was determined. The history of DNA illustrates several important points about the nature of scientific research. As with so many important scientific advances, DNA's structure and its role as the genetic material were not discovered by any single person but were gradually revealed over a period of almost 100 years, thanks to the work of many investigators. Our understanding of the relation between DNA and genes was enormously enhanced in 1953, when James Watson and Francis Crick proposed a three-dimensional structure for DNA that brilliantly illuminated its role in genetics. As illustrated by Watson and Crick's discovery, major scientific advances are often achieved not through the collection of new data but through the interpretation of old data in new ways.

After reviewing the history of DNA, we will examine DNA structure. DNA structure is important in its own right, but the key genetic concept is the relation between the structure and the function of DNA — how its structure allows it to serve as the genetic material.

Was this article helpful?

0 0

Post a comment