Polygenic Inheritance

The rediscovery of Mendel's work in 1900 provided a cohesive theory of inheritance, but the characteristics that Mendel studied were all discontinuous. Questions soon arose about the inheritance of continuously varying characteristics. These characteristics had already been the focus of a group of biologists and statisticians, led by Francis Galton, who were known as biometricians. They examined the inheritance of quantitative characteristics such as human height and intelligence by using statistical procedures. The results of these studies showed that quantitative characteristics are inherited, although the mechanism of inheritance was as yet unknown. After Mendel's work was rediscovered, a bitter dispute broke out about whether Mendel's principles applied to quantitative characteristics. Some biometricians argued that the inheritance of quantitative characteristics could not be explained by Mendelian principles, whereas others felt that Mendel's principles acting on numerous genes (polygenes) could adequately account for the inheritance of quantitative characteristics.

This conflict began to be resolved by the work of Wilhelm Johannsen, who showed that continuous variation in the weight of beans was influenced by both genetic and environmental factors. George Udny Yule, a mathematician, proposed in 1906 that several genes acting together could produce continuous characteristics. This hypothesis was later confirmed by Herman Nilsson-Ehle, working on wheat and tobacco, and by Edward East, working on corn. The argument was finally laid to rest in 1918, when Ronald Fisher demonstrated that the inheritance of quantitative characteristics could indeed be explained by the cumulative effects of many genes, each following Mendel's rules.

0 0

Post a comment