Correlated Responses

Two or more characteristics are often correlated. Human height and weight exhibit a positive correlation: tall people, on the average, weigh more than short people. This correlation is a phenotypic correlation, because the association is between two phenotypes of the same person. Phenotypic correlations may be due to environmental or genetic correlations. Environmental correlations refer to two or more characteristics that are influenced by the same environmental factor. Moisture availability, for example, may affect both the size of a plant and the number of seeds produced by the plant. Plants growing in environments with lots of water are large and produce many seeds, whereas plants growing in environments with limited water are small and have few seeds.

Alternatively, a phenotypic correlation may result from a genetic correlation, which means that the genes affecting two characteristics are associated. The primary genetic cause of phenotypic correlations is pleiotropy, which is due to the effect of one gene on two or more characteristics (see p. 000 in Chapter 5). In humans, for example, many body structures respond to growth hormone, and there are genes that affect the amount of growth hormone secreted by the pituitary gland. People with certain genes produce high levels of growth hormone, which increases both height and hand size. Others possess genes that produce lower levels of growth hormone, which leads to both short stature and small hands. Height and hand size are therefore phenotypi-cally correlated in humans, and this correlation is due to a genetic correlation—the fact that both characteristics are affected by the same genes that control the amount of growth hormone. Genetically speaking, height and hand size are the same characteristic, because they are the phe-notypic manifestation of a single set of genes. When two characteristics are influenced by the same genes they are genetically correlated.

Genetic correlations are quite common (Table 22.3) and may be positive or negative. A positive genetic correlation between two characteristics means that genes that cause an increase in one characteristic also produce an increase in the other characteristic. Thorax length and wing length in Drosophila are positively correlated because the genes that increase thorax length also increase wing length. A negative genetic correlation means that genes that cause an increase in one characteristic produce a decrease in the other characteristic. Milk yield and percentage of butterfat are negatively correlated in cattle: genes that cause higher milk production result in milk with a lower percentage of butterfat.

Genetic correlations are important in animal and plant breeding because they produce a correlated response to selection, which means that, when one characteristic is selected, genetically correlated characteristics also change. Correlated responses to selection occur because both characteristics are influenced by the same genes; selection for one characteristic causes a change in the genes affecting that

1 Table 223|

Genetic correlations in various

0 0

Post a comment