Connecting Concepts Across Chapters

Because it is single stranded and can form hydrogen bonds between complementary bases on the same strand, RNA is capable of assuming a number of secondary structures. This ability gives RNA functional flexibility, and it assumes a number of important roles in information transfer within the cell.

A central theme in this chapter has been the nature of the gene. The concept of a gene has changed with time and even today depends on the particular question that is being addressed. A modern definition used by many geneticists is: a gene is a sequence of nucleotides in DNA that is transcribed into a single RNA molecule.

The details of RNA function and processing covered in this chapter are important for understanding the process of protein synthesis, which is the focus of Chapter 15. Knowledge of the structure of the ribosome and tRNAs will be important for understanding how amino acids are assembled into a protein. In eukaryotic cells, features [such as the 5' cap and the poly(A) tail] that are added to pre-mRNA and those removed (introns) from it are essential for translation to proceed properly. These features of processed mRNA also play an important role in eukaryotic gene regulation, a subject to be addressed in Chapter 16.

0 0

Post a comment