1. Zimanyi, I.A.; Pelleymounter, M.A. The role of melanocortin peptides and receptors in regulation of energy balance. Curr. Pharm. Des. 2003, 9, 627-641.

2. Yang, Y.K.; Harmon, C.M. Recent developments in our understanding of the melanocortin system in the regulation of food intake. Obes. Rev. 2003, 4, 239-248.

3. Adage, T.; Scheurink, A.J.; deBoer, S.F.; de Vries, K.; Konsman, J.P; Kuipers, F.; Adan, R.A.; Baskin, D.G.; Schwartz, M.W.; van Dijk, G. Hypothalamic, metabolic, and behavioral responses to pharmacological inhibition of CNS melanocortin signaling in rats. J. Neurosci. 2001, 21, 3639-3645.

Foster, A.C.; Joppa, M.; Markison, S.; Gogas, K.R.; Fleck, B.A.; Murphy, B.J.; Wolff, M.; Cismowski, M.J.; Ling, N.; Goodfellow, V.S.; Chen, C.; Saunders, J.; Conlon, P J. Body weight regulation by selective MC4 receptor agonists and antagonists. Ann. N.Y. Acad. Sci. 2003, 994, 103-110.

Pritchard, L.E.; Turnbull, A.V.; White, A. Pro-opiomelanocortin processing in the hypothalamus: impact on melanocortin signalling and obesity. J. Endocrinol. 2002, 172, 411-421.

Kishi, T.; Aschkenasi, C.J.; Lee, C.E.; Mountjoy, K.G.; Saper, C.B.; Elmquist, J.K. Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J. Comp. Neurol. 2003, 457, 213-235.

Harrold, J. A.; Widdowson, P.S.; Williams, G. beta-MSH: a functional ligand that regulated energy homeostasis via hypothalamic MC4-R? Peptides. 2003, 24, 397-405.

Bjorbaek, C.; Hollenberg, A.N. Leptin and melanocortin signaling in the hypothalamus. Vitam. Horm. 2002, 65, 281-311.

Xu, B.; Goulding, E.H.; Zang, K.; Cepoi, D.; Cone, R.D.; Jones, K.R.; Tecott, L.H.; Reichardt, L.F. Brain-derived neurotrophic factor regulates energy balance downstream of melanocortin-4 receptor. Nat. Neurosci. 2003, 6, 736-742. Huszar, D.; Lynch, C.A.; Fairchild-Huntress, V.; Dunmore, J.H.; Fang, Q.; Berke-meier, L.R.; Gu, W.; Kesterson, R.A.; Boston, B.A.; Cone, R.D.; Smith, F.J.; Campfield, L.A.; Burn, P.; Lee, F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell. 1997, 88, 131-141.

Marsh, D.J.; Hollopeter, G.; Huszar, D.; Laufer, R.; Yagaloff, K.A.; Fisher, S.L.; Burns, P.; Palmiter, R.D. Response of melanocortin-4 receptor-deficient mice to anorectic and orexigenic peptides. Nat. Genet. 1999, 21, 119-122. Butler, A.A.; Cone, R.D. The melanocortin receptors: lessons from knockout models. Neuropeptides. 2002, 36, 77-84.

Chen, A.S.; Marsh, D.J.; Trumbauer, M.E.; Frazier, E.G.; Guan, X.M.; Yu, H.; Rosenblum, C.I.; Vongs, A.; Feng, Y.; Cao, L.; Metzger, J.M.; Strack, A.M.; Camacho, R.E.; Mellin, T.N.; Nunes, C.N.; Min, W.; Fisher, J.; Gopal-Truter, S.; MacIntyre, D.E.; Chen, H.Y.; Van der Ploeg, L.H. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nat. Genet. 2000, 26, 97-102.

Ste. Marie, L.; Miura, G.I.; Marsh, D.J.; Yagaloff, K.; Palmiter, R.D. A metabolic defect promotes obesity in mice lacking melanocortin-4 receptors. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12339-12344.

Butler, A.A.; Kesterson, R.A.; Khong, K.; Cullen, M.J.; Pelleymounter, M.A.; Dekoning, J.; Baetscher, M.; Cone, R.D. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology. 2000, 141, 3518-3521.

Weide, K.; Christ, N.; Moar, K.M.; Arens, J.; Hinney, A.; Mercer, J.G.; Eiden, S.; Schmidt, I. Hyperphagia, not hypometabolism, causes early onset obesity in melano-cortin-4 receptor knockout mice. Physiol. Genomics. 2003, 13, 47-56. Cummings, D.E.; Schwartz, M.W. Melanocortins and body weight: a tale of two receptors. Nat. Genet. 2000, 26, 8-9.

Farroqi, I.S.; Keogh, J.M.; Yeo, G.S.; Lank, E.J.; Cheetham, T.; O'Rahilly, S. Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. New Engl. J. Med. 2003, 348, 1085-1095.

Di Marzo, V.; Bifulco, M.; De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004, 3, 771-784.

20. Mechoulam, R.; Ben-Shabat, S.; Hanus, L.; Ligumsky, M.; Kaminski, N.E.; Schatz, A.R.; Gopher, A.; Almog, S.; Martin, B.R.; Compton, D.R.; Pertwee, R.G.; Griffin, G.; Bayewitch, M.; Barg, J.; Vogel, Z. Identification of an endogenous 2-monoglyc-eride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995, 50, 83-90.

21. Stella, N.; Schweitzer, P.; Piomelli, D. A second endogenous cannabinoid that modulates long-term potentiation. Nature. 1997, 388, 773-778.

22. Harrold, J.A.; Elliott, J.C.; King, P. J.; Widdowson, P.S.; Williams, G. Down-regulation of cannabinoid-1 (CB-1) receptors in specific extrahypothalamic regions of rats with dietary obesity: a role for endogenous cannabinoids in driving appetite for palatable food? Brain Res. 2002, 952, 232-238.

23. Di Marzo, V.; Goparaju, S.K.; Wang, L.; Liu, J.; Batkai, S.; Jarai, Z.; Fezza, F.; Miura, G.I.; Palmiter, R.D.; Sugiura, T.; Kunos, G. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001, 410, 822-825.

24. Cota, D.; Marsicano, G.; Tschop, M.; Grubler, Y.; Flachskamm, C.; Schubert, M.; Auer, D.; Yassouridis, A.; Thone-Reineke, C.; Ortmann, S.; Tomassoni, F.; Cervino,

C.; Nisoli, E.; Linthorst, A.C.; Pasquali, R.; Lutz, B.; Stalla, G.K.; Pagotto, U. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 2003, 112, 423-431.

25. Ravinet-Trillou, C.; Delgorge, C.; Menet, C.; Arnone, M.; Soubrie, P. CB1 cannab-inoid receptor knockout in mice leads to leanness, resistance to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. Relat. Metab. Disord. 2004, 28, 640-648.

26. Horvath, T.L.; Castaneda, T.; Tang-Christensen, M.; Pagotto, U.; Tschop, M.H. Ghre-lin as a potential anti-obesity target. Curr. Pharm. Des. 2003, 9, 1383-1395.

27. Inui, A.; Asakawa, A.; Bowers, C.Y.; Mantovani, G.; Laviano, A.; Meguid, M.M.; Fujimiya, M. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J. 2004, 18, 439-456.

28. Smith, R.G.; Sun, Y.; Betancourt, L.; Asnicar, M. Growth hormone secretagogues: prospects and potential pitfalls. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 333-347.

29. Lu, S.; Guan, J.L.; Wang, Q.P; Uehara, K.; Yamada, S.; Goto, N.; Date, Y.; Nakazato, M.; Kojima, M.; Kangawa, K.; Shioda, S. Immunocytochemical observation of ghre-lin-containing neurons in the rat arcuate nucleus. Neurosci. Lett. 2002, 321, 157-160.

30. Wren, A.M.; Seal, L.J.; Cohen, M.A.; Brynes, A.E.; Frost, G.S.; Murphy, K.G.; Dhillo, W.S.; Ghatei, M.A.; Bloom, S.R. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 2001, 86, 5992-5995.

31. Goldstone, A.P. Prader-Willi syndrome: advances in genetics, pathophysiology and treatment. Trends Endocrinol. Metab. 2004, 15, 12-20.

32. Cummings, D.E.; Clement, K.; Purnell, J.Q.; Vaisse, C.; Foster, K.E.; Frayo, R.S.; Schwartz, M.W.; Basdevant, A.; Weigle, D.S. Elevated plasma ghrelin levels in Prader-Willi syndrome. Nat. Med. 2002, 8, 643-644.

33. Cummings, D.E.; Purnell, J.Q.; Frayo, R.S.; Schmidova, K.; Wisse, B.E.; Weigle,

D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes. 2001, 50, 1714-1719.

34. Cummings, D.E.; Frayo, R.S.; Marmonier, C.; Aubert, R.; Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time-and food-related cues. Am. J. Physiol. Endocrinol. Metab. 2004, 287, E297-E304.

35. Toshinai, K.; Mondal, M.S., Nakazato, M.; Date, Y.; Murakami, N.; Kojima, M.; Kangawa, K.; Matsukura, S. Upregulation of ghrelin expression in the stomach upon fasting, insulin-induced hypoglycemia, and leptin administration. Biochem. Biophys. Res. Commun. 2001, 281, 1220-1225.

Nogueiras, R.; Tovar, S.; Mitchell, S.E.; Rayner, D.V.; Archer, Z.A.; Dieguez, C.; Williams, L.M. Regulation of growth hormone secretagogue receptor gene expression in the arcuate nuclei of the rat by leptin and ghrelin. Diabetes. 2004, 53, 2552-2558. Nakazato, M.; Murakami, N.; Date, Y.; Kojima, M.; Matsuo, H.; Kangawa, K.; Matsukura, S. A role for ghrelin in the central regulation of feeding. Nature. 2001, 409, 194-198.

Tschop, M.; Smiley, D.L.; Heiman, M.L. Ghrelin induces adiposity in rodents. Nature. 2000, 407, 908-913.

Sun, Y.; Wang, P; Zheng, H.; Smith, R.G. Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 4679-4684.

Sun, Y.; Ahmed, S.; Smith, R.G. Deletion of ghrelin impairs neither growth nor appetite. Mol. Cell. Biol. 2003, 23, 7973-7981.

Shuto, Y.; Shibasaki, T.; Otagiri, A.; Kuriyama, H.; Ohata, H.; Tamura, H.; Kamegai, J.; Sugihara, H.; Oikawa, S.; Wakabayashi, I. Hypothalamic growth hormone secretagogue receptor regulates growth hormone secretion, feeding, and adiposity. J. Clin. Invest. 2002, 109, 1429-1436.

Bittencourt, J.C.; Presse, F.; Arias, C.; Peto, C.; Vaughan, J.; Nahon, J.L.; Vale, W.; Sawchenko, P.E. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J. Comp. Neurol. 1992, 319, 218-245.

Bittencourt, J.C.; Frigo, L.; Rissman, R.A.; Casatti, C.A.; Nahon, J.L.; Bauer, J.A. The distribution of melanin-concentrating hormone in the monkey brain (Cebus apella). Brain Res. 1998, 804, 140-143.

Casatti, C.A.; Elias, C.F.; Sita, L.V.; Frigo, L.; Furlani, V.C.; Bauer, J.A.; Bittencourt, J.C. Distribution of melanin-concentrating hormone neurons projecting to the medial mammillary nucleus. Neuroscience. 2002, 115, 899-915.

Qu, D.; Ludwig, D.S.; Gammeltoft, S.; Piper, M.; Pelleymounter, M.A.; Cullen, M.J.; Mathes, W.F.; Przypek, R.; Kanarek, R.; Maratos-Flier, E. A role for melanin-concentrating hormone in the central regulation of feeding behaviour. Nature. 1996, 380, 243-247. Chambers, J.; Ames, R.S.; Bergsma, D.; Muir, A.; Fitzgerald, L.R.; Hervieu, G.; Dytko, G.M.; Foley, J.J.; Martin, J.; Liu, W.S.; Park, J.; Ellis, C.; Ganguly, S.; Konchar, S.; Cluderay, J.; Leslie, R.; Wilson, S.; Sarau, H.M. Melanin-concentrating hormone is the cognate ligand for the orphan G-protein-coupled receptor SLC-1. Nature. 1999, 400, 261-265.

Saito, Y.; Nothacker, H.P; Wang, Z.; Lin, S.H.; Leslie, F.; Civelli, O. Molecular characterization of the melanin-concentrating-hormone receptor. Nature. 1999, 400, 265-269.

Lembo, P.M.; Grazzini, E.; Cao, J.; Hubatsch, D.A.; Pelletier, M.; Hoffert, C.; St-Onge, S.; Pou, C.; Labrecque, J.; Groblewski, T.; O'Donnell, D.; Payza, K.; Ahmad, S.; Walker, P. The receptor for the orexigenic peptide melanin-concentrating hormone is a G-protein-coupled receptor. Nat. Cell. Biol. 1999, 1, 267-271. Della-Zuana, O.; Presse, F.; Ortola, C.; Duhault, J.; Nahon, J.L.; Levens, N. Acute and chronic administration of melanin-concentrating hormone enhances food intake and body weight in Wistar and Sprague-Dawley rats. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 1289-1295.

Ito, M.; Gomori, A.; Ishihara, A.; Oda, Z.; Mashiko, S.; Matsushita, H.; Yumoto, M.; Ito, M.; Sano, H.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Characterization of MCH-mediated obesity in mice. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E940-E945.

51. Hakansson, M.L.; Brown, H.; Ghilardi, N.; Skoda, R.C.; Meister, B. Leptin receptor immunoreactivity in chemically defined target neurons of the hypothalamus. J. Neu-rosci. 1998, 18, 559-572.

52. Sahu, A. Leptin decreases food intake induced by melanin-concentrating hormone (MCH), galanin (GAL) and neuropeptide Y (NPY) in the rat. Endocrinology. 1998, 139, 4739-4742.

53. Huang, Q.; Viale, A.; Picard, F.; Nahon, J.; Richard, D. Effects of leptin on melanin-concentrating hormone expression in the brain of lean and obese Lep(ob)/Lep(ob) mice. Neuroendocrinology. 1999, 69, 145-153.

54. Kokkotou, E.G.; Tritos, N.A.; Mastaitis, J.W.; Slieker, L.; Maratos-Flier. E. Melanin-concentrating hormone receptor is a target of leptin action in the mouse brain. Endocrinology. 2001, 142, 680-686.

55. Gomori, A.; Ishihara, A.; Ito, M.; Mashiko, S.; Matsushita, H.; Yumoto, M.; Ito, M.; Tanaka, T.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Chronic intracerebroven-tricular infusion of MCH causes obesity in mice: melanin-concentrating hormone. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E583-E588.

56. Segal-Lieberman, G.; Bradley, R.L.; Kokkotou, E.; Carlson, M.; Trombly, D.J.; Wang, X.; Bates, S.; Myers, M.G. Jr.; Flier, J.S.; Maratos-Flier, E. Melanin-concentrating hormone is a critical mediator of the leptin-deficient phenotype. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 10085-10090.

57. Ludwig, D.S.; Tritos, N.A.; Mastaitis, J.W.; Kulkarni, R.; Kokkotou, E.; Elmquist, J.; Lowell, B.; Flier, J.S.; Maratos-Flier, E. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. J. Clin. Invest. 2001, 107, 379-386.

58. Shimada, M,; Tritos, N.A.; Lowell, B.B.; Flier, J.S.; Maratos-Flier, E. Mice lacking melanin-concentrating hormone are hypophagic and lean. Nature. 1998, 396, 670-674.

59. Chen, Y.; Hu, C.; Hsu, C.K.; Zhang, Q.; Bi, C.; Asnicar, M.; Hsiung, H.M.; Fox, N.; Slieker, L.J.; Yang, D.D.; Heiman, M.L.; Shi, Y. Targeted disruption of the melanin-concentrating hormone receptor-1 results in hyperphagia and resistance to diet-induced obesity. Endocrinology. 2002, 143, 2469-2477.

60. Marsh, D.J.; Weingarth, D.T.; Novi, D.E.; Chen, H.Y.; Trumbauer, M.E.; Chen, A.S.; Guan, X.-M.; Jiang, M.M.; Feng, Y.; Camacho, R.E.; Shen, Z.; Frazier, E.G.; Yu, H.; Metzger, J.M.; Kuca, S.J.; Shearman, L.P.; Gopal-Truter, S.; MacNeil, D.J.; Strack, A.M.; MacIntyre, D.E.; Van der Ploeg, L.H.T.; Qian, S. Melanin-concentrating hormone 1 receptor-deficient mice are lean, hyperactive, and hyperphagic and have altered metabolism. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 3240-3245.

61. An, S.; Cutler, G.; Zhao, J.J.; Huang, S.G.; Tian, H.; Li, W.; Liang, L.; Rich, M.; Bakleh, A.; Du, J.; Chen, J.L.; Dai, K. Identification and characterization of a melanin-concentrating hormone receptor. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7576-7581.

62. Sailer, A.W.; Sano, H.; Zeng, Z.; McDonald, T.P; Pan, J.; Pong, S.S.; Feighner, S.D.; Tan, C.P.; Fukami, T.; Iwaasa, H.; Hreniuk, D.L.; Morin, N.R.; Sadowski, S.J.; Ito, M.; Ito, M.; Bansal, A.; Ky, B.; Figueroa, D.J.; Jiang, Q.; Austin, C.P.; MacNeil, D.J.; Ishihara, A.; Ihara, M.; Kanatani, A.; Van der Ploeg, L.H.; Howard, A.D.; Liu, Q. Identification and characterization of a second melanin-concentrating hormone receptor, MCH-2R. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 7564-7569.

63. Tan, C.P.; Sano, H.; Iwaasa, H.; Pan, J.; Sailer, A.W.; Hreniuk, D.L.; Feighner, S.D.; Palyha, O.C.; Pong, S.S.; Figueroa, D.J.; Austin, C.P.; Jiang, M.M.; Yu, H.; Ito, J.; Ito, M.; Ito, M.; Guan, X.M.; MacNeil, D.J.; Kanatani, A.; Van der Ploeg, L.H.; Howard, A.D. Melanin-concentrating hormone receptor subtypes 1 and 2: species-specific gene expression. Genomics. 2002, 79, 785-792.

64. Wang, S.; Behan, J.; O'Neill, K.; Weig, B.; Fried, S.; Laz, T.; Bayne, M.; Gustafson, E.; Hawes, B.E. Identification and pharmacological characterization of a novel human melanin-concentrating hormone receptor, mch-r2. J. Biol. Chem. 2001, 276, 34664-34670.

65. Vickers, S.P.; Dourish, C.T. Serotonin receptor ligands and the treatment of obesity. Curr. Opin. Invest. Drugs. 2004, 5, 377-388.

66. Hayashi, A.; Sonoda, R.; Kimura, Y.; Takasu, T.; Suzuki, M.; Sasamata, M.; Miyata, K. Antiobesity effect of YM348, a novel 5-HT2C receptor agonist, in Zucker rats. Brain Res. 2004, 1011, 221-227.

67. De Vry, J.; Schreiber, R. Effects of selected serotonin 5-HT(1) and 5-HT(2) receptor agonists on feeding behavior: possible mechanisms of action. Neurosci. Biobehav. Rev. 2000, 24, 341-353.

68. Bickerdike, M.J. 5-HT2C receptor agonists as potential drugs for the treatment of obesity. Curr. Top. Med. Chem. 2003, 3, 885-897.

69. Bouwknecht, J.A.; van der Gugten, J.; Hijzen, T.H.; Maes, R.A.; Hen, R.; Olivier,

B. Male and female 5-HT(1B) receptor knockout mice have higher body weights than wild types. Physiol. Behav. 2001, 74, 507-516.

70. Heisler, L.K.; Tecott, L.H. Knockout corner: neurobehavioural consequences of a serotonin 5-HT(2C) receptor gene mutation. Int. J. Neuropsychopharmacol. 1999, 2, 67-69.

71. Lopez-Gimenez, J.F.; Tecott, L.H.; Palacios, J.M.; Mengod, G.; Vilaro, M.T. Serotonin 5-HT (2C) receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J. Neurosci. Res. 2002, 67, 69-85.

72. Nonogaki, K.; Abdallah, L.; Goulding, E.H.; Bonasera, S.J.; Tecott, L.H. Hyperac-tivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes. 2003, 52, 315-320.

73. Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P; Wilson, S.; Arch, J.R.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998, 92, 573-585.

74. de Lecea, L.; Kilduff, T. S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, PE.; Fukuhara,

C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S. 2nd; Frankel, W.N.; van den Pol, A.N.; Bloom, F.E.; Gautvik, K.M.; Sutcliffe, J.G. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 322-327.

75. Blanco, M.; Lopez, M.; Garcia-Caballero, T.; Gallego, R.; Vazquez-Boquete, A.; Morel, G.; Senaris, R.; Casanueva, F.; Dieguez, C.; Beiras, A. Cellular localization of orexin receptors in human pituitary. J. Clin. Endocrinol. Metab. 2001, 86, 1616-1619.

76. Blanco, M.; Gallego, R.; Garcia-Caballero, T.; Dieguez, C.; Beiras, A. Cellular localization of orexins in human anterior pituitary. Histochem. Cell Biol. 2003, 120, 259-264.

77. Volgin, D.V.; Swan, J.; Kubin, L. Single-cell RT-PCR gene expression profiling of acutely dissociated and immunocytochemically identified central neurons. J. Neuro-sci. Methods. 2004, 136, 229-236.

78. Peyron, C.; Tighe, D.K.; van den Pol, A.N.; de Lecea, L.; Heller, H.C.; Sutcliffe, J.G.; Kilduff, T. S. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 1998, 18, 9996-10015.

79. Nakabayashi, M.; Suzuki, T.; Takahashi, K.; Totsune, K.; Muramatsu, Y.; Kaneko, C.; Date, F.; Takeyama, J.; Darnel, AD.; Moriya, T.; Sasano, H. Orexin-A expression in human peripheral tissues. Mol. Cell. Endocrinol. 2003, 205, 43-50.

80. Drazen, D.L.; Coolen, L.M.; Strader, A.D.; Wortman, M.D.; Woods, S.C.; Seeley, R.J. Differential effects of adrenalectomy on melanin-concentrating hormone and orexin A. Endocrinology. 2004, 145, 3404-3412.

81. Sweet, D.C.; Levine, A.S.; Billington, C.J.; Kotz, C.M. Feeding response to central orexins. Brain Res. 1999, 821, 535-538.

82. Dube, M.G.; Kalra, S.P.; Kalra, PS. Food intake elicited by central administration of orexins/hypocretins: identification of hypothalamic sites of action. Brain Res. 1999, 842, 473-477.

83. Xu, Y.L.; Jackson, V.R.; Civelli, O. Orphan G protein-coupled receptors and obesity. Eur. J. Pharmacol. 2004, 500, 243-253.

84. Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 2001, 24, 429-458.

85. Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Tokita, S.; Williams, S.C.; Kisanuki, Y.Y.; Marcus, J.N.; Lee, C.; Elmquist, J.K.; Kohlmeier, K.A.; Leonard, C.S.; Richardson, J.A.; Hammer, R.E.; Yanagisawa, M. Distinct narcolepsy syndromes in orexin recep-tor-2- and orexin-null mice: molecular genetic dissection of non-REM and REM sleep regulatory processes. Neuron. 2003, 38, 715-730.

86. Pijl, H. Reduced dopaminergic tone in hypothalamic neural circuits: expression of a "thrifty" genotype underlying the metabolic syndrome? Eur. J. Pharmacol. 2003, 480, 125-131.

87. Yamada, K.; Wada, E.; Santo-Yamada, Y.; Wada K. Bombesin and its family of peptides: prospects for the treatment of obesity. Eur. J. Pharmacol. 2002, 440, 281-290; erratum published in Eur. J. Pharmacol. 2002, 448, 269.

88. Hancock, A.A. H3 receptor antagonists/inverse agonists as anti-obesity agents. Curr. Opin. Invest. Drugs. 2003, 4, 1190-1197.

89. Gundlach, A.L. Galanin/GALP and galanin receptors: role in central control of feeding, body weight/obesity and reproduction? Eur. J. Pharmacol. 2002, 440, 255-268.

90. Woods, S.C. Gastrointestinal satiety signals. I. An overview of gastrointestinal signals that influence food intake. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G7-G13.

91. Beglinger, C.; Degen, L.; Matzinger, D.; D'Amato, M.; Drewe, J. Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feeling in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R1149-R1154.

92. Moran, T.H.; Kinzig, K.P. Gastrointestinal satiety signals. II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G183-G188.

93. Kopin, A.S.; Lee, Y.M.; McBride, E.W.; Miller, L.J.; Lu, M.; Lin, H.Y.; Kolakowski, L.F. Jr.; Beinborn, M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc. Natl. Sci. U.S.A. 1992, 89, 3605-3609.

94. Pisegna, J.R.; DeWeerth, A.; Huppi, K.; Wank, S.A. Molecular cloning of the human brain and gastric cholecystokinin receptor: structure, functional expression and chromosomal localization. Biochem. Biophys. Res. Commun. 1992, 189, 296-303.

95. Asin, K.E.; Bednarz, L.; Nikkel A.L.; Gore, P.A. Jr.; Nadzan A.M. A-71623, a selective CCK-A receptor agonist, suppresses food intake in the mouse, dog, and monkey. Pharmacol. Biochem. Behav. 1992, 42, 699-704.

96. Moran, T.H.; Ameglio, P.J.; Schwartz, G.J.; McHugh, PR. Blockade of type A, not type B, CCK receptors attenuates satiety actions of exogenous and endogenous CCK. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1992, 262, R46-R50.

97. Funakoshi, A.; Miyasaka, K.; Shinozaki, H.; Masuda, M.; Kawanami, T.; Takata, Y.; Kono, A. An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochem. Biophys. Res. Commun. 1995, 210, 787-796.

98. Moran, T.H.; Katz, L.F.; Plata-Salaman, C.R.; Schwartz, G.J. Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1998, 274, R618-R625.

99. Bi, S.; Moran, T.H. Actions of CCK in the controls of food intake and body weight: lessons from the CCK-A receptor deficient OLETF rat. Neuropeptides. 2002, 36, 171-181.

100. West, D.B.; Fey, D.; Woods, S.C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1984, 246, R776-R787.

101. Kopin, A.S.; Mathes, W.F.; McBride, E.W.; Nguyen, M.; Al-Haider, W.; Schmitz, F.; Bonner-Weir, S.; Kanarek, R.; Beinborn, M. The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J. Clin. Invest. 1999, 103, 383-391.

102. Crawley, J.N.; Beinfeld, M.C. Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature. 1983, 302, 703-706.

103. Noble, F.; Roques, B.P. Phenotypes of mice with invalidation of cholecystokinin (CCKj or CCK2) receptors. Neuropeptides. 2002, 36, 157-170.

104. Wynne, K.; Stanley, S.; Bloom, S. The gut and regulation of body weight. J. Clin. Endocrinol. Metab. 2004, 89, 2576-2582.

105. Schwartz, T.W. Pancreatic polypeptide: a hormone under vagal control. Gastroenterology. 1983, 85, 1411-1425.

106. Gates, R.J.; Lazarus, N.R. The ability of pancreatic polypeptides (APP and BPP) to return to normal the hyperglycaemia, hyperinsulinaemia and weight gain of New Zealand obese mice. Horm. Res. 1977, 8, 189-202.

107. Zipf, W.B.; O'Dorisio, T.M., Cataland, S.; Sotos, J. Blunted pancreatic polypeptide responses in children with obesity of Prader-Willi syndrome. J. Clin. Endocrinol. Metab. 1981, 52, 1264-1266.

108. Uhe, A.M.; Szmukler, G.I.; Collier, G.R.; Hansky, J.; O'Dea, K.; Young, G.P. Potential regulators of feeding behavior in anorexia nervosa. Am. J. Clin. Nutr. 1992, 55, 28-32.

109. Ueno N.; Inui, A.; Iwamoto, M.; Kaga, T.; Asakawa, A.; Okita, M.; Fujimiya, M.; Nakajima, Y.; Ohmoto, Y.; Ohnaka, M.; Nakaya, Y.; Miyazaki, J.I.; Kasuga, M. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology. 1999, 117, 1427-1432.

110. Asakawa, A.; Inui, A.; Yuzuriha, H.; Ueno, N.; Katsuura, G.; Fujimiya, M.; Fujino, M.A., Niijima, A.; Meguid, M.M.; Kasuga, M. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology. 2003, 124, 1325-1336.

111. Batterham, R.L.; Le Roux, C.W.; Cohen, M.A.; Park, A.J.; Ellis, S.M.; Patterson, M.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 2003, 88, 3989-3992.

112. Larhammar D. Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide. Regul. Pept. 1996, 65, 165-174.

113. Leiter, A.B.; Toder, A.; Wolfe, H.J.; Taylor, I.L.; Cooperman, S.; Mandel, G.; Goodman, R.H. Peptide YY: structure of the precursor and expression in exocrine pancreas. J. Biol. Chem. 1987, 262, 12984-12988.

114. Eberlein, G.A.; Eysselein, V.E.; Schaeffer, M.; Layer, P.; Grandt, D.; Goebell, H.; Niebel, W.; Davis, M.; Lee, T.D.; Shively, J.E.; Reeve, J.R. A new molecular form of PYY: structural characterization of human PYY(3-36) and PYY(1-36). Peptides. 1989, 10, 797-803.

115. Batterham, R.L.; Cowley, M.A.; Small, C.J.; Herzog, H.; Cohen, M.A.; Dakin, C.L.; Wren, A.M.; Brynes, A.E.; Low M.J.; Ghatei, M.A.; Cone, R.D.; Bloom, S.R. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002, 418, 650-654.

116. Batterham, R.L.; Cohen, M.A.; Ellis, S.M.; Le Roux, C.W.; Withers, D.J.; Frost, G.S.; Ghatei, M.A.; Bloom, S.R. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 2003, 349, 941-948.

117. Kanatani, A.; Mashiko, S.; Murai, N.; Sugimoto, N.; Ito, J.; Fukuroda, T.; Fukami, T.; Morin, N.; MacNeil, D.J.; Van der Ploeg, L.H.; Saga, Y.; Nishimura, S.; Ihara, M. Role of the Y1 receptor in the regulation of neuropeptide Y-mediated feeding: comparison of wild-type, Y1 receptor-deficient, and Y5 receptor-deficient mice. Endocrinology. 2000, 141, 1011-1016.

118. Stanley, B.G.; Leibowitz, S.F. Neuropeptide Y: stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sci. 1984, 35, 2635-2642.

119. Akabayashi, A.; Wahlestedt, C.; Alexander, J.T.; Leibowitz, S.F. Specific inhibition of endogenous neuropeptide Y synthesis in arcuate nucleus by antisense oligonucle-otides suppresses feeding behavior and insulin secretion. Brain Res. Mol. Brain Res. 1994, 21, 55-61.

120. Shibasaki, T.; Oda, T.; Imaki, T.; Ling, N.; Demura, H. Injection of anti-neuropeptide

Y gamma-globulin into the hypothalamic paraventricular nucleus decreases food intake in rats. Brain Res. 1993, 601, 313-316.

121. Erickson, J.C.; Clegg, K.E.; Palmiter, R.D. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature. 1996, 381, 415-421.

122. Stephens, T.W.; Basinski, M.; Bristow, PK.; Bue-Valleskey, J.M.; Burgett, S.G.; Craft, L.; Hale, J.; Hoffmann, J.; Hsiung, H.M.; Kriauciunas, A.; MacKellar, W.; Rosteck, PR.; Schoner, B.; Smith, D.; Tinsley, F.C.; Zhang, X-Y.; Heiman, M. The role of the neuropeptide Y in the antiobesity action of the obese gene product. Nature. 2002, 377, 530-532.

123. Gerald, C.; Walker, M.W.; Criscione, L.; Gustafson, E.L.; Batzl-Hartmann, C.; Smith, K.E.; Vaysse, P; Durkin, M.M.; Laz, T.M.; Linemeyer, D.L.; Schaffhauser, A.O.; Whitebread, S.; Hofbauer, K.G.; Taber, R.I.; Branchek, T.A.; Weinshank, R.L. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature. 1996, 382, 168-171.

124. Kushi, A.; Sasai, H.; Koizumi, H.; Takeda, N.; Yokoyama, M.; Nakamura, M. Obesity and mild hyperinsulinemia found in neuropeptide Y-Y1 receptor-deficient mice. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 15659-15664.

125. Marsh, D.J.; Hollopeter, G.; Kafer, K.E.; Palmiter, R.D. Role of the Y5 neuropeptide

Y receptor in feeding and obesity. Nat. Med. 1998, 4, 718-721.

126. Hoppener, J.W.M.; Ahren, B.; Lips, C.J.M. Islet amyloid and type 2 diabetes mellitus. N. Engl. J. Med. 2000, 343, 411-419.

127. Nyholm, B.; Brock, B.; 0rskov, L.; Schmitz, O. Amylin receptor agonists: a novel pharmacological approach in the management of insulin-treated diabetes mellitus. Expert Opin. Invest. Drugs. 2001, 10, 1641-1652.

Muff, R.; Born, W.; Fischer, J.A. Calcitonin, calcitonin gene-related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur. J. Endocrinol. 1995, 133, 17-20.

Poyner, D.R.; Sexton, P.M.; Marshall, I.; Smith, D.M.; Quirion, R.; Born, W.; Muff, R.; Fischer, J. A.; Foord, S.M. International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. 2002, 54, 233-246.

Born, W.; Fischer, J.A.; Muff, R. Receptors for calcitonin gene-related peptide, adrenomedullin, and amylin: the contributions of novel receptor-activity-modifying proteins. Receptors Channels. 2002, 8, 201-209.

Reidelberger, R.D.; Haver, A.C.; Arnelo, U.; Smith, D.D.; Schaffert, C.S.; Permert, J. Amylin receptor blockade stimulates food intake in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R568-R574.

Stanley, S.; Wynne, K.; Bloom, S. Gastrointestinal satiety signals. III. Glucagon-like peptide 1, oxyntomodulin, peptide YY, and pancreatic polypeptide. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 286, G693-G697.

Wang, Z.; Wang, R.M.; Owji, A.A.; Smith, D.M.; Ghatei, M.A.; Bloom, S.R. Gluca-gon-like peptide-1 is a physiological incretin in rat. J. Clin. Invest. 1995, 95, 417-421. Meier, J.J.; Nauck, M.A. The potential role of glucagon-like peptide 1 in diabetes. Curr. Opin. Invest. Drugs. 2004, 5, 402-410.

Holst, J.J. Treatment of type 2 diabetes mellitus with agonists of the GLP1 receptor or DPP-IV inhibitors. Expert. Opin. Emerg. Drugs. 2004, 9, 155-166.

Zander, M.; Madsbad, S.; Madsen, J.L.; Holst, J.J. Effect of 6-week course of glu-

cagon-like peptide 1 on glycaemic control, insulin sensitivity, and ß-cell function in type 2 diabetes: a parallel-group study. Lancet. 2002, 359, 824-830.

Dillon, J.S.; Tanizawa, Y.; Wheeler, M.B.; Leng, X.-H.; Ligon, B.B.; Rabin, D.U.;

Yoo-Warren, H.; Permutt, M.A.; Boyd, A.E., III. Cloning and functional expression of the human glucagon-like peptide-1 (GLP1) receptor. Endocrinology. 1993, 133,


Turton, M.D.; O'Shea, D.; Gunn, I.; Beak, S.A.; Edwards, C.M.B.; Meeran, K.; Choi, S.J.; Taylor, G.M.; Heath, M.M.; Lambert, P.D.; Wilding, J.P.H.; Smith, D.M.; Ghatei, M.A.; Herbert, J.; Bloom, S.R. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature. 1996, 379, 69-72.

Kinzig, K.P.; D'Alessio, D.A.; Seeley, R.J. The diverse roles of specific GLP1 receptors in the control of food intake and the response to visceral illness. J. Neurosci. 2002, 22, 10470-10476.

Scrocchi, L.A.; Brown, T.J.; MacLusky, N.; Brubaker, PL.; Auerbach, A.B.; Joyner, A.L.; Drucker, D.J. Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nat. Med. 1996, 2, 1254-1258. During, M.J.; Cao, L.; Zuzga, D.S.; Francis, J.S.; Fitzsimons, H.L.; Jiao, X.; Bland, R.J.; Klugmann, M.; Banks, W.A.; Drucker, D.J.; Haile, C.N. Glucagon-like peptide-1 is involved in learning and neuroprotection. Nat. Med. 2003, 9, 1173-1179. Drucker, D.J. Glucagon-like peptide 2. J. Clin. Endocrinol. Metab. 2001, 86, 1759-1764.

Yusta, B.; Huang, L.; Munroe, D.; Wolff, G.; Fantaske, R.; Sharma, S.; Demchyshyn, L.; Asa, S.L.; Drucker, D.J. Enteroendocrine localization of GLP2 receptor expression in humans and rodents. Gastroenterology. 2000, 119, 744-755. S0rensen, L.B.; Flint, A.; Raben, A.; Hartmann, B.; Holst, J.J.; Astrup, A. No effect of physiological concentrations of glucagon-like peptide-2 on appetite and energy intake in normal weight subjects. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 450-456.

145. Tang-Christensen, M.; Larsen, P.J.; Thulesen, J.; R0mer, J.; Vrang, N. The progluca-gon-derived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nat. Med. 2000, 6, 802-807.

146. Unger, R.H.; Orci, L. Glucagon and the A cell: physiology and pathophysiology. N. Engl. J. Med. 1981, 304, 1518-1524; 1575-1580.

147. Shah, P.; Vella, A.; Basu, A.; Basu, R.; Schwenk, W.F.; Rizza, R.A. Lack of suppression of glucagon contributes to postprandial hyperglycemia in subjects with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2000, 85, 4053-4059.

148. Djuric, S.W.; Grihalde, N.; Lin, C.W. Glucagon receptor antagonists for the treatment of type II diabetes: current prospects. Curr. Opin. Invest. Drugs. 2002, 3, 1617-1623.

149. Burcelin, R.; Katz, E.B.; Charron, M.J. Molecular and cellular aspects of the glucagon receptor: role in diabetes and metabolism. Diabetes Metab. 1996, 22, 373-396.

150. Jelinek, L.J.; Lok, S.; Rosenberg, G.B.; Smith, R.A.; Grant, F.J.; Biggs, S.; Bensch, PA.; Kuijper, J.L.; Sheppard, P.O.; Sprecher, C.A. et al. Expression cloning and signaling properties of the rat glucagon receptor. Science. 1993, 259, 1614-1616.

151. Huypens, P.; Ling, Z.; Pipeleers, D.; Schuit, F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia. 2000, 43, 1012-1019.

152. Parker, J.C.; Andrews, K.M.; Allen, M.R.; Stock, J.L.; McNeish, J.D. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem. Biophys. Res. Commun. 2002, 290, 839-843.

153. Gelling, R.W.; Du, X.Q.; Dichmann, D.S.; R0mer, J.; Huang, H.; Cui, L.; Obici, S.; Tang, B.; Holst, J.J.; Fledelius, C.; Johansen, P.B.; Rossetti, L.; Jelicks, L.A.; Serup, P; Nishimura, E.; Charron, M.J. Lower blood glucose, hyperglucagonemia, and pancreatic a cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 1438-1443.

154. Yip, R.G.C.; Wolfe, M.M. GIP biology and fat metabolism. Life Sci. 2000, 66, 91-103.

155. Holst, J.J.; Gromada, J.; Nauck, M.A. The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia. 1997, 40, 984-986.

156. Vilsb0ll, T.; Krarup, T.; Madsbad, S.; Holst, J. Defective amplification of the late phase insulin response to glucose by GIP in obese type II diabetic patients. Diabe-tologia 2002, 45, 1111-1119.

157. Meier, J.J.; Hücking, K.; Holst, J.J.; Deacon, C.F.; Schmiegel, W.H.; Nauck, M.A. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. Diabetes. 2001, 50, 2497-2504.

158. Miyawaki, K.; Yamada, Y.; Yano, H.; Niwa, H.; Ban, N.; Ihara, Y.; Kubota, A.; Fujimoto, S.; Kajikawa, M.; Kuroe, A.; Tsuda, K.; Hashimoto, H.; Yamashita, T.; Jomori, T.; Tashiro, F.; Miyazaki, J.; Seino, Y. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 14843-14847.

159. Hansotia, T.; Baggio, L.L.; Delmeire, D.; Hinke, S.A.; Yamada, Y.; Tsukiyama, K.; Seino, Y.; Holst, J.J.; Schuit, F.; Drucker, D.J. Double incretin knockout (DIRKO) mice reveal an essential role for the enteroinsular axis in transducing the glucoregu-latory actions of DPP-IV inhibitors. Diabetes. 2004, 53, 1326-1335.

160. Miyawaki, K.; Yamada, Y.; Ban, N.; Ihara, Y.; Tsukiyama, K.; Zhou, H.; Fujimoto, S.; Oku, A.; Tsuda, K.; Toyokuni, S.; Hiai, H.; Mizunoya, W.; Fushiki, T.; Holst, J.J.; Makino, M.; Tashita, A.; Kobara, Y.; Tsubamoto, Y.; Jinnouchi, T.; Jomori, T.; Seino, Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat. Med. 2002, 8, 738-742.

161. Robidoux, J.; Martin, T.L.; Collins, S. P-adrenergic receptors and regulation of energy expenditure: a family affair. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 297-323.

162. Atgie, C.; D'Allaire, F.; Bukowiecki, L.J. Role of P1- and P3-adrenoreceptors in the regulation of lipolysis and thermogenesis in rat brown adipocytes. Am. J. Physiol. 1997, 273, C1136-C1142.

163. Lowell, B.B.; Bachman, E.S. P-adrenergic receptors, diet-induced thermogenesis, and obesity. J. Biol. Chem. 2003, 278, 29385-29388.

164. Susulic, V.S.; Frederich, R.C.; Lawitts, J.; Tozzo, E.; Kahn, B.B.; Harper, M.E.; Himms-Hagen, J.; Flier, J.S.; Lowell, B.B. Targeted disruption of the P3-adrenergic receptor gene. J. Biol. Chem. 1995, 270, 29483-29492.

165. Bachman, E.S.; Dhillon, H.; Zhang, C.-Y.; Cinti, S.; Bianco, A.C.; Kobilka, B.K.; Lowell, B.B. PAR signaling required for diet-induced thermogenesis and obesity resistance. Science. 2002, 297, 843-845.

166. Crowley, V.E.F.; Yeo, G.S.H.; O'Rahilly, S. Obesity therapy: altering the energy intake-and-expenditure balance sheet. Nat. Rev. Drug Discov. 2002, 1, 276-286.

167. Sawzdargo, M.; George, S.R.; Nguyen, T.; Xu, S.; Kolakowski, L.F.; O'Dowd, B.F. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem. Biophys. Res. Commun. 1997, 239, 543-547.

168. Briscoe, C.P.; Tadayyon, M.; Andrews, J.L.; Benson, W.G.; Chambers, J.K.; Eilert, M.M.; Ellis, C.; Elshourbagy, N.A.; Goetz, A.S.; Minnick, D.T.; Murdock, P.R.; Sauls, H.R. Jr.; Shabon, U.; Spinage, L.D.; Strum, J.C.; Szekeres, PG.; Tan, K.B.; Way, J.M.; Ignar, D.M.; Wilson, S.; Muir, A.I. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem. 2003, 278, 11303-11311.

169. Le Poul, E.; Loison, C.; Struyf, S.; Springael, J-Y.; Lannoy, V.; Decobecq, M-E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; Parmentier, M.; Detheux, M. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481-25489.

170. Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; Pike, N.B.; Strum, J.C.; Steplewski, K.M.; Murdock, P.R.; Holder, J.C.; Marshall, F.H.; Szekeres, P.G.; Wilson, S.; Ignar, D.M.; Foord, S.M.; Wise, A.; Dowell, S.J. The orphan G proteincoupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312-11319.

171. Xiong, Y.; Miyamoto, N.; Shibata, K.; Valasek, M.A.; Motoike, T.; Kedzierski, R.M.; Yanagisawa, M. Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 1045-1050.

172. Boden, G.; Shulman, G.I. Free fatty acids and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur. J. Clin. Invest. 2002, 32, 14-23.

173. Itoh, Y.; Kawamata, Y.; Harada, M.; Kobayashi, M.; Fujii, R.; Fukusumi, S.; Ogi, K.; Hosoya, M.; Tanaka, Y.; Uejima, H.; Tanaka, H.; Maruyama, M.; Satoh, R.; Okubo, S.; Kizawa, H.; Komatsu, H.; Matsumura, F.; Noguchi, Y.; Shinohara, T.; Hinuma, S.; Fujisawa, Y.; Fujino, M. Free fatty acids regulate insulin secretion from pancreatic cells through GPR40. Nature. 2003, 422, 173-176.

Dynamic Six Pack Abs

Dynamic Six Pack Abs

Reasonable care has been taken to ensure that the information presented in this book is accurate. However, the reader should understand that the information provided does not constitute legal, medical or professional advice of any kind.

Get My Free Ebook

Post a comment