Destroy Depression

Natural Treatment for Depression

Get Instant Access

1. Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; Bergmann, J.E.; Gaitanaris, G.A. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4903-4908.

2. Kenakin, T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat. Rev. Drug Disc. 2003, 2, 429-438.

3. Sprouse, J.S.; Aghajanian, G.K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur. J. Pharmacol. 1986, 128 (3), 295-298.

4. Sprouse, J.S.; Reynolds, L.S.; Braselton, J.P. ; Rollema, H.; Zorn, S.H. Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsycho-pharmacology 1999, 21, 622-631.

5. Blier, P.; de Montigny, C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1987, 1, 470-480.

6. Doherty, J.; Dingledine, R. Functional interactions between cannabinoid and metabo-tropic glutamate receptors in the central nervous system. Curr. Opin. Pharmacol. 2003, 3, 46-53.

7. Varma, N.; Carlson, G.C.; Ledent, C.; Alger, B.E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 2001, 21, RC188.

8. Morisset, S.; Rouleau, A.; Ligneau, X.; Gbahou, F.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C.R.; Schwartz, J.C.; Arrang, J.M. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 2000, 408, 860-864.

9. De Deurwaerdere, P.; Navailles, S.; Berg, K.A.; Clarke, W.P.; Spampinato, U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosci. 2004, 24, 3235-3241.

10. Bai, M. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal. 2004, 16, 175-186.

11. Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 2004, 84, 835-867.

12. Nicholas, A.P; Hokfely, T.; Pieribone, V.A. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. TiPS. 1996, 17, 245.

13. Smith, M.S.; Schambra, U.B.; Wilson, K.H.; Page, S.O.; Schwinn, D.A. Alpha 1-adrenergic receptors in human spinal cord: specific localized expression of mRNA encoding alpha1-adrenergic receptor subtypes at four distinct levels. Brain Res. Mol. Brain Res. 1999, 63, 254-261.

14. Hirasawa, A.; Horie, K.; Tanaka, T.; Takagaki, K.; Murai, M.; Yano, J.; Tsujimoto, G. Cloning, functional expression and tissue distribution of human cDNA for the alpha -1C adrenergic receptor. Biochem. Biophys. Res. Commun. 1993, 195, 902-909.

15. Scheinin, M.; Lomasney, J.W.; Hayden-Hixson, D.M.; Schambra, U.B.; Caron, M.G.; Lefkowitz, R.J.; Fremeau, R.T. Jr. Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res. Mol. Brain Res. 1994, 21, 133-149.

16. Vilaro, M.T.; Palacios, J.M.; Mengod, G. Multiplicity of muscarinic autoreceptor subtypes: comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the brain. Brain Res. Mol. Brain Res., 1994, 21, 30-46.

17. Buckley, N.J.; Bonner, T.I.; Brann, M.R. Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 1988, 8, 4646-4652.

18. Wei, J.; Walton, E.A.; Milici, A.; Buccafusco, J.J. m1-m5 Muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J. Neurochem. 1994, 63, 815-821.

19. Weiner, D.M.; Levey, A.I.; Brann, M.R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 7050-7054.

20. Ellis, J. Muscarinic receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 349-371.

21. Valerio, A.; Belloni, M.; Gorno, M.L.; Tinti, C.; Memo, M.; Spano, P Dopamine D2, D3, and D4 receptor mRNA levels in rat brain and pituitary during aging. Neurobiol. Aging. 1994, 15, 713-719.

22. Fremeau, R.T.; Duncan, G.E.; Fornaretto, M.G.; Dearry, A.; Gingrich, J.A.; Brees, G.R.; Caron, M.G. Localization of Djdopamine receptor mRNA in brain supports a role in cognitive, affective and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 3772-3776.

23. van Dijken, H.; Dijk, J.; Voom, P; Holstege, J.C. Localization of dopamine D2 receptor in rat spinal cord identified with immunocytochemistry and in situ hybridization. Eur. J. Neurosci. 1996, 8, 621-628.

24. Mansour, A.; Meador-Woodruff, J.H.; Bunzow, J.R.; Civelli, O.; Akil, H.; Watson, S.J. Localization of dopamine D2 receptor mRNA and D1and D2 receptor binding in the rat brain and pituitary: an in situ hybridization receptor autoradiographic analysis. J. Neurosci. 1990, 10, 2587-2601.

25. Bouthenet, M.-L.; Souil, E.; Martres, M.-P.; Sokoloff, P.; Giros, B.; Schwartz, J.-C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with D2 receptor mRNA. Brain Res. 1991, 564, 203-219.

Matsumoto, M.; Hidaka, K.; Tada, S.; Tasaki, Y.; Yamaguchi, T. Low levels of mRNA for dopamine D4 receptor in human cerebral cortex and striatum. J. Neurochem. 1996, 66, 915-919.

Xie, G.X.; Jones, K.; Peroutka, S.J.; Palmer, PP Detection of mRNAs and alternatively spliced transcripts of dopamine receptors in rat peripheral sensory and sympathetic ganglia. Brain Res. 1998, 785, 129-135.

Meador-Woodruff, J.H.; Mansour, A.; Grandy, D.K.; Damask, S.P; Civelli, O.; Watson, S.J., Jr. Distribution of D5 dopamine receptor mRNA in the rat brain. Neurosci. Lett. 1992, 145, 209-212.

Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637-672.

Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol. 1999, 55, 1101-1107.

Kashiba, H.; Fukui, H.; Morikawa, Y.; Senba, E. Gene expression of histamine H1 receptor in guinea pig primary sensory neurons: a relationship between H1 receptor mRNA-expressing neurons and peptidergic neurons. Mol. Brain Res. 1999, 66, 24-34.

Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 2002, 114, 173-193.

Murakami, H.; Sun-Wada, G.H.; Matsumoto, M.; Nishi, T.; Wada, Y.; Futai, M. Human histamine H2 receptor gene: multiple transcription initiation and tissue-specific expression. FEBS Lett. 1999, 451, 327-331.

Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781-36786.

Saudou, F.; Hen, R. 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem. Int. 1994, 25, 503-532.

Roberts, C.; Price, G.W.; Middlemiss, D.N. Serotonin receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. pp. 439-468. Ambrosini, E.; Aloisi, F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem. Res. 2004, 29, 1017-1038.

Gustafson, E.L.; Smith, K.E.; Durkin, M.M.; Gerald, C.; Branchek, T.A. Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport. 1996, 7, 953-957. O'Donnell, D.; Ahmad, S.; Wahlestedt, C.; Walker, P. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J. Comp. Neurol. 1999, 409, 469-481.

Mennicken, F.; Hoffert, C.; Pelletier, M.; Ahmad, S.; O'Donnell, D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J. Chem. Neuroanat. 2002, 24, 257-268.

Roselli-Rehfuss, L.; Mountjoy, K.G.; Robbins, L.S.; Mortrud, M.T.; Low, M.J.; Tatro, J.B.; Entwistle, M.L.; Simerly, R.B.; Cone, R.D. Identification of a receptor for g-melanotropin and other propiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8856-8860.

Mountjoy, K.G.; Mortrud, M.T.; Low, M.J.; Simerly, R.B.; Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 1994, 8, 1298-1308.

43. Griffon, N.; Mignon, V.; Facchinetti, P.; Diaz, J.; Schwartz, J. C.; Sokoloff, P. Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1007-1014.

44. Howard, A.D.; Wang, R.; Pong, S.S.; Mellin, T.N.; Strack, A.; Guan, X.M.; Zeng, Z.; Williams, D.L. Jr.; Feighner, S.D.; Nunes, C.N.; Murphy, B.; Stair, J.N.; Yu, H.; Jiang, Q.; Clements, M.K.; Tan, C.P; McKee, K.K.; Hreniuk, D.L.; McDonald, T.P.; Lynch, K.R.; Evans, J.F.; Austin, C.P; Caskey, C.T.; Van der Ploeg, L.H.; Liu, Q. Identification of receptors for neuromedin U and its role in feeding. Nature 2000, 406, 70-74.

45. Raddatz, R.; Wilson, A.E.; Artymyshyn, R.; Bonini, J.A.; Borowsky, B.; Boteju, L.W.; Zhou, S.; Kouranova, E.V.; Nagorny, R. Guevarra, M.S.; Dai, M.; Lerman, G.S.; Vaysse, PJ.; Branchek, T.A.; Gerald, C.; Forray, C.; Adham, N. Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system. J. Biol. Chem. 2000, 275, 32452-32459.

46. Parker, R.M.C.; Herzog, H. Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur. J. Neurosci. 1999, 11, 1431.

47. Landry, M.; Holmberg, K.; Zhang, X.; Hokfelt, T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohis-tochemistry. Exp. Neurol. 2000, 162, 361-384.

48. Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 1999, 20, 302-309.

49. Walker, N.; Lepee-Lorgeoux, I.; Fournier, J.; Betancur, C.; Rostene, W.; Ferrara, P; Caput, D. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res. Mol. Brain Res. 1998, 57, 193-200.

50. Mansour, A.; Fox, C.A.; Akil, H.; Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995, 18, 22-29.

51. Neal, C.R.; Mansour, A.; Reinscheid, R.; Nothacker, H. P.; Civelli, O.; Akil, H.; Watson, S.J. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with 125I-[14Tyr]-orphanin FQ binding. J. Comp. Neurol. 1999, 412, 563-605.

52. Tsuchida, K.; Shigemoto, R.; Yokota, Y.; Nakanishi, S. Tissue distribution and quantitation of the mRNAs for three rat tachykinin receptors. Eur. J. Biochem. 1990, 193, 751-757.

53. Lu, Q.; Straiker, A.; Lu, Q.; Maguire, G. Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis. Neurosci. 2000, 17, 91-95.

54. Mailleux, P; Vanderhaeghen, J.-J. Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience. 1992, 48, 655-668.

55. Latini, S.; Pazzagli, M; Pepeu, G.; Pedata, F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen. Pharmacol. 1996, 27, 925-933.

56. Dixon, A.K.; Gubitz, A.K.; Sirinathsinghji, D.J.; Richardson, PJ.; Freeman, T.C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol. 1996, 118, 1461-1468.

57. Fredholm, B.B. Adenosine receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 191-204.

Mazzucchelli, C.; Pannacci, M.; Nonno, R.; Lucini, V.; Fraschini, F.; Stankov, B.M. The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res. Mol. Brain Res. 1996, 39, 117-126.

Reppert, S.M.; Godson, C.; Mahle, C.D.; Weaver, D.R.; Slaugenhaupt, S.A.; Gusella, J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel~b melatonin receptor. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 8734-8738.

Valerio, A.; Paterlini, M.; Boifava, M.; Memo, M.; Spano, PF. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Neuroreport. 1997, 8, 2695-2699. Ohishi, H.; Akazawa, C.; Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J. Comp. Neurol. 1995, 360, 555-570.

Testa, C.M.; Standaert, D.G.; Young, A.B.; Penney, J.B. Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 1994, 14, 3005-3018.

Fotuhi, M.; Standaert, D.G.; Testa, C.M.; Penney, J.B., Jr.; Young, A.B. Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Brain Res. Mol. Brain Res. 1994, 21, 283-292.

Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 1993, 13,


Pin, J.-P.; Bockaert, J. Metabotropic glutamate receptors, in Understanding G ProteinCoupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 588-616.

Benke, D.; Honer, M.; Michel, C.; Bettler, B.; Mohler, H. g-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution J. Biol. Chem. 1999, 274, 27323-27330.

Agnati, L.F.; Ferre, S.; Lluis, C.; Franco, R.; Fuxe, K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 2003, 55, 509-550.

Neubig, R.P.; Siderovski, D.P Regulators of G-protein signaling as new central nervous system drug targets. Nat. Rev. Drug Dis. 2002, 1, 187-197.

Cosoff, S.J.; Hafner, R.J. The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder, and bipolar disorder. Austral. NZ J. Psychiatr. 1998, 32,

Wetherell, J.L.; Palmer, B.W.; Thorp, S.R.; Patterson, T.L. Golshan, S.; Jeste, D.V. Anxiety symptoms and quality of life in middle-aged and older outpatients with schizophrenia and schizoaffective disorder. J. Clin. Psychiatr. 2003, 64,1476-1482. Mclntyre, R.; Katzman, M. The role of atypical antipsychotics in bipolar depression and anxiety disorders. Bipolar Disord. 2003, 5 (Suppl. 2), 20-35. Benes, F.M.; Tamminga, C.A. Neurobiology of schizophrenia, in Psychiatry as a Neuroscience, John Wiley & Sons, New York, 2002; pp. 197-236. Owen, M.J.; Williams, N.M.; O'Donovan, M.C. The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatr. 2004, 9, 14-27. Capuano, B.; Crosby, I.T.; Lloyd, E.J. Schizophrenia: genesis, receptorology, and current therapeutics. Curr. Med. Chem. 2002, 9, 521-548.

75. National Institutes of Mental Health Psychoactive Drug Screening Program; PDSP Ki database:

76. Tamminga, C.A. Similarities and differences among antipsychotics. J. Clin. Psychiatr.

77. Arana, G.W. An overview of side effects caused by typical antipsychotics. J. Clin. Psychiatr. 2000, 61 (Suppl. 8), 5-11.

78. Roth, B.L.; Sheffler, D.; Potkin, S.G. Atypical antipsychotic drug actions: unitary or multiple mechanisms for 'atypicality'? Clin. Neurosci. Res. 2003, 31, 108-117.

79. Kapur, S.; Remmington, G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol. Psychiatr. 2001, 50, 873-883.

80. Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Dis.

81. Kane, J.; Honigfield, G.; Singer, J.; Meltzer, H.Y. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch. Gen. Psychiatr. 1988, 45, 789-796.

82. Meltzer, H.Y.; Alphs, L.; Green, A.I.; Altamura, A.C.; Anand, R.; Bertoldi, A.; Bourgeois, M.; Chouinard, G.; Islam, M.Z.; Kane, J.; Krishnan, R.; Lindenmayer, J.P.; Potkin, S. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial. Arch. Gen. Psychiatr. 2003, 60, 82-91.

83. Kapur, S.; Zipursky, R.; Jones, C. et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch. Gen. Psychiatr. 2000, 57, 553-559.

84. Carlsson, A. Current status of the dopamine hypothesis of schizophrenia. Neuropsy-chopharmacology. 1988, 1, 179-186.

85. Shapiro, D.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.-X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole: a novel antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology. 2003, 28, 1400-1411.

86. Milligan, G. Constitutive activity and inverse agonists of G protein coupled receptors: a current perspective. Mol. Pharmacol. 2003, 64, 1271-1276.

87. Rauser, L.; Savage, J.E.; Meltzer, H.Y.; Roth, B.L. Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J. Pharmacol. Exp. Ther. 2001, 299, 83-89.

88. Roth, B.L.; Hanizavareh, S.M.; Blum, A.E. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology. 2004, 174,17-24.

89. Mortimer, A.M.; Barnes, T.R.E. Serotonergic Mechanisms in Antipsychotic Treatment. Marcel Dekker, New York, 1996; pp. 311-330.

90. Meltzer, H.Y.; Arvanitis, L.; Bauer, D.; Rein, W. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatr. 2004, 161, 975-984.

91. Corrigan, M.H.; Gallen, C.C.; Bonura, M.L.;, Merchant, K.M. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol. Psychiatr. 2004, 55, 445-451.

92. Serretti, A.; Artioli, P; De Ronchi, D. The 5HT2C receptor as a target for mood disorders. Expert Opin. Ther. Targets. 2004, 8, 15-23.

93. Sodhi, M.S.; Burnet, PW.; Makoff, A.J.; Kerwin, R.W.; Harrison, P.J. RNA editing of the 5HT2C receptor is reduced in schizophrenia. Mol. Psychiatr. 2001, 6, 373-379.

Burns, C.M.; Chu, H.; Rueter, S.M.; Hutchinson, L.K.; Canton, H.; Sanders-Bush, E.; Emeson, R.B. Regulation of serotonin 2C receptor G-protein coupling by RNA editing. Nature. 1997, 387, 303-308.

Mirza, N.R.; Peters, D.; Sparks, R.G. Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev. 2003, 9, 159-186. van der Stelt, M.; Di Marzo, V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur. J. Pharmacol. 2003, 480, 133-150.

Dean, B.; Sundram, S.; Bradbury, R; Scarr, E.; Copolov, D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience. 2001, 103 (1), 9-15.

Andersen, M.B.; Fuxe, K.; Werge, T.; Gerlach, J. The adenosine A2a receptor agonist CGS21680 exhibits antipsychotic-like activity in Cebus paella monkeys. Behav. Pharmacol. 2002, 13, 639-644.

Ferre, S.; Ciruela, F.; Canals, M.; Marcellino, D.; Burgueno, J,; Casado, V.; Hillion, J.; Torvinen, M.; Fanelli, F.; de Benedetti, P.; Goldberg, S.R.; Bouvier, M.; Fuxe, K.; Agnati, L.F.; Lluis, C. Franco, R.; Woods, A. Adenosine A2a-dopamine D2 receptor-receptor heteromers: targets for neuro-psychiatric disorders. Parkinsonism Rel. Dis. 2004, 10, 265-271.

Mortimer, A.M. Novel antipsychotics in schizophrenia. Exp. Opin. Invest. Drugs. 2004, 13, 315-329.

Williams, G.V.; Rao, S.G.; Goldman-Rakic, P.S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 2002, 22, 2843-2854. Woolley, M.L.; Bentley, J.C.; Sleight, A.J.; Marsden, C.A.; Fone, K.C. A role for 5-HT6 receptors in retention of spatial learning in the Morris water maze. Neurophar-macology. 2001, 41, 210-219.

Goldman-Rakic, PS.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology. 2004, 174, 3-16.

Wang, M.; Vijayraghavan, S.; Goldman-Rakic, PS. Selective D2 receptor actions on the functional circuitry of working memory. Science. 2004, 303, 853-856. Svensson, T.H. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypical-ity. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2003, 27, 1145-1158. Seeman, P.; Lee, T.; Chan-Wong, M.; Wong, K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976, 261, 717-719.

Creese, I.; Burt, D.R.; Snyder, S.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976, 192, 481-483. Kebabian, J.W.; Calne, D.B. Multiple receptors for dopamine. Nature. 1979, 277, 93-96. Bunzow, J.R.; Van Tol, H.H.; Grandy, D.K.; Albert, P.; Salon, J.; Christie, M.; Machida, C.A.; Neve, K.A.; Civelli, O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature. 1998, 336, 783-787.

Emilien, G.; Maloteaux, J.M.; Geurts, M.; Hoogenberg, K.; Cragg, S. Dopamine receptors: physiological understanding to therapeutic intervention potential. Pharmacol. Ther. 1999, 84, 133-156.

Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neuro-biol. 2002, 67, 53-83.

Floran, B.; Floran, L.; Erlij, D.; Aceves, J. Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuro-pharmacology. 2004, 46, 497-503.

113. Powell, S.B.; Paulus, M.P.; Hartman, D.S.; Godel, T.; Geyer, M.A. RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology. 2003, 44, 473-481.

114. Oak, J.N.; Oldenhof, J.; Van Tol, H.H. The dopamine D(4) receptor: one decade of research Eur. J. Pharmacol. 2000, 405, 303-327.

115. Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 1994, 64, 291-370.

116. Hartman, D.S.; Civelli, O. Molecular attributes of dopamine receptors: new potential for antipsychotic drug development. Ann. Med. 1996, 28, 211-219.

117. Simpson, M.M.; Ballesteros, J.A.; Chiappa, V.; Chen, J.; Suehiro, M.; Hartman, D.S.; Godel, T.; Snyder, L.A.; Sakmar, T.P; Javitch, J.A. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol. Pharmacol. 1999, 56, 1116-1126.

118. Newman-Tancredi, A.; Audinot-Bouchez, V.; Gobert, A.; Millan, M.J. Noradrenaline and adrenaline are high affinity agonists at dopamine D4 receptors. Eur. J. Pharmacol. 1997, 319, 379-383.

119. Lanau, F.; Zenner, M.T.; Civelli, O.; Hartman, D.S. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J. Neurochem. 1997, 68, 804-812.

120. Catalano, M.; Nobile, M.; Novelli, E.; Nothen, M.M.; Smeraldi, E. Distribution of a novel mutation in the first exon of the human dopamine D4 receptor gene in psychotic patients. Biol. Psychiatr. 1993, 34, 459-464.

121. Zenner, M.T.; Nobile, M.; Henningsen, R.; Smeraldi, E.; Civelli, O.; Hartman, D.S.; Catalano, M. Expression and characterization of a dopamine D4R variant associated with delusional disorder. FEBS Lett. 1998, 422, 146-150.

122. Ding, Y.C.; Chi, H.C.; Grady, D.L.; Morishima, A.; Kidd, J.R.; Kidd, K.K.; Flodman, P; Spence, M.A.; Schuck, S.; Swanson, J.M.; Zhang, Y.P.; Moyzis, R.K. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 309-314.

123. Grady, D.L.; Chi, H.C.; Ding, Y.C.; Smith, M.; Wang, E.; Schuck, S.; Flodman, P.; Spence, M.A.; Swanson, J.M.; Moyzis, R.K. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol. Psychiatr. 2003, 8, 536-545.

124. Lichter, J.B.; Barr, C.L.; Kennedy, J.L.; Van Tol, H.H.; Kidd, K.K.; Livak, K.J. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum. Mol. Genet. 1993, 2, 767-773.

125. Benjamin, J.; Li, L.; Patterson, C.; Greenberg, B.D.; Murphy, D.L.; Hamer, D.H. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet. 1996, 12, 81-84.

126. Ebstein, R.P.; Nemanov, L.; Klotz, I.; Gritsenko, I.; Belmaker, R.H. Additional evidence for an association between the dopamine D4 receptor (D4DR) exon III repeat polymorphism and the human personality trait of novelty seeking. Mol. Psychiatr. 1997, 2, 472-477.

127. Langley, K.; Marshall, L.; van den Bree, M.; Thomas, H.; Owen, M.; O'Donovan, M.; Thapar, A. Association of the dopamine D4 receptor gene 7-repeat allele with neuropsy-chological test performance of children with ADHD. Am. J. Psychiatr. 2004, 61, 133-138.

128. Diaz-Anzaldua, A.; Joober, R.; Riviere, J.B.; Dion, Y.; Lesperance, P.; Richer, F.; Chouinard, S.; Rouleau, G.A. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol. Psychiatr. 2004, 9, 272-277.

129. Wang, E.; Ding, Y.C.; Flodman, P.; Kidd, J.R.; Kidd, K.K.; Grady, D.L.; Ryder, O.A.; Spence, M.A.; Swanson, J.M.; Moyzis, R.K. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am. J. Hum. Genet. 2004, 74, 931-944.

130. Nothen, M.M.; Cichon, S.; Hemmer, S.; Hebebrand, J.; Remschmidt, H.; Lehmkuhl, G.; Poustka, F.; Schmidt, M.; Catalano, M.; Fimmers, R. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Hum. Mol. Genet. 1994, 3, 2207-2212.

131. Zubenko, G.S.; Maher, B.S.; Hughes, H.B., III; Zubenko, W.N.; Scott-Stiffler, J.; Marazita, M.L. Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am. J. Med. Genet. 2004, 15, 47-54.

132. Wong, M.L.; Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat. Rev. Drug Discov. 2004, 3, 136-151.

133. Kuhn, R. Uber die behandlung depressives zustande mit einem iminobenzylderivat. Schwiez Med.Wochenschr. 1957, 87, 1135-1140.

134. Pacher P.; Kecskemeti, I. Trends in development of new antidepressants: is there a light at the end of the tunnel? Curr. Med. Chem. 2004, 11, 925-943.

135. Kent, J.M. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 2000, 355, 911-918.

136. Millan, M.J. Improving the treatment of schizophrenia: focus on serotonin (5-HT)1A receptors. J. Pharmacol. Exp. Ther. 2000, 295, 853-861.

137. Hindmarch, I. Beyond the monoamine hypothesis: mechanisms, molecules, and methods. Eur. Psychiatr. 2002, 17 (Suppl. 3), 294-299.

138. Duffy, R. Potential therapeutic targets for neurokinin-1 receptor antagonists. Exp. Opin. Emerg. Drugs. 2004, 9, 9-21.

139. Stout, S.C.; Owens, M.J.; Nemeroff, C.B. Neurokinin 1 receptor antagonists as potential antidepressants. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 877-906.

140. Rupniak, N.M.; Kramer, M.S. Discovery of the anti-depressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol. Sci. 1999, 20, 485-490.

141. Rupniak, N.M.; Carlson, E.C.; Harrison, T.; Oates, B.; Seward, E.; Owen, S.; de Felipe, C.; Hunt, S.; Wheeldon, A. Pharmacological blockade or genetic deletion of substance P (NK1) receptors attenuates neonatal vocalization in guinea pigs and mice. Neuropharmacology. 2000, 39, 1413-1421.

142. Kramer, M.S.; Cutler, N.; Feighner, J.; Shrivastava, R.; Carman, J.; Sramek, J.J.; Reines, S.A.; Liu, G.; Snavely, D.; Wyatt-Knowles, E.; Hale, J.J.; Mills, S.G.; Mac-Coss, M.; Swain, C.J.; Harrison, T.; Hill, R.G.; Hefti, F.; Scolnick, E.M.; Cascieri, M.A.; Chicchi, G.G.; Sadowski, S.; Williams, A.R.; Hewson, L.; Smith, D.; Carlson, E.J.; Hargreaves, R.J.; Rupniak, N.M.J. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998, 281, 1640-1645.

143. Kramer, M.S.; Winokur, A.; Kelsey, J.; Preskorn, S.H.; Rothschild, A.J.; Snavely, D.; Ghosh, K.; Ball, W. A.; Reines, S.A.; Munjack, D.; Apter, J.T.; Cunningham, L.; Kling, M.; Bari, M.; Getson, A.; Lee, Y. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacol-ogy. 2004, 29, 385-392.

144. Gold, P.W.; Wong, M.L.; Chrousos, G.; Licinio, J. Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol. Psychol. 1996, 1, 257-264.

145. Strohle, A.; Holsboer, F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003, 36 (Suppl. 3), S207-S214.

146. Zobel, A.W.; Nickel, T.; Kunzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the high-affinity corticotrophin-releasing hormone receptor 1 antagonist R-121919 in major depression: the first 20 patients. J. Psych. Res. 2000, 34, 171-181.

147. Bymaster, F.P.; McNamara, R.K.; Tran, P.V. New approaches to developing antide-pressants by enhancing monoaminergic neurotransmission. Exp. Opin. Invest. Drugs. 2003, 12, 531-543.

148. Gorwood, P. Generalized anxiety disorder and major depressive disorder comorbidity: an example of genetic pleiotropy? Eur. Psychiatr. 2004, 19, 27-33.

149. Zorrilla, E.P.; Koob, G.F. The therapeutic potential of CRF1 antagonists for anxiety. Exp. Opin. Invest. Drugs. 2004, 13, 799-828.

150. Blier, P; Gobbi, G.; Haddjeri, N.; Santarelli, L.; Mathew, G.; Hen, R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant-anxiolytic response. Rev. Psychiatr. Neurosci. 2004, 29, 208-218.

151. Millan, M.J. The neurobiology and control of anxious states. Prog. Neurobiol. 2003, 70, 83-244.

152. Fields, H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 2004, 5, 565-575.

153. Gaveriaux-Ruff, C.; Kieffer, B.L. Opioid receptor genes inactivated in mice: the highlights. Neuropeptides. 2002, 36, 62-71.

154. Pan, Y.X.; Xu, J.; Mahurter, L.; Xu M.; Gilbert, A.K.; Pasternak, G.W. Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem. Biophys. Res. Commun. 2003, 301, 1057-1061.

155. Rapaka, R.S.; Porreca, F. Development of delta opioid peptides as nonaddicting analgesics. Pharm. Res. 1991, 8, 1-8.

156. Scherrer, G.; Befort, K.; Contet, C.; Becker, J.; Matifas, A.; Kiefferk B. The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur. J. Neurosci. 2004, 19, 2239-2248.

157. Traynor, J.R.; Elliott, J. 5-Opioid receptor subtypes and cross-talk with m-receptors. TiPS. 1993, 14, 84-86.

158. He, L.; Lee, N.M. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J. Pharmacol. Exp. Ther. 1998, 285, 1181-1186.

159. Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H.H.; Pintar, J.E.; Devi, L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5135-5159.

160. Cheng, P.Y.; Liu-Chen, L.Y.; Pickel, V.M. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res. 1997, 778, 367-380.

161. Mollereau, C.; Parmentier, M.; Mailleux, P; Butour, J.L.; Moisand, C.; Chalon, P; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994, 341, 33-38.

162. Meunier, J.-Cl.; Mollereau, C.; Toll, L.; Suaudeau, Ch.; Moisand, Ch.; Alvinerie, P; Butour, J.-L.; Guillemot, J. Cl.; Ferrara, P.; Monsarrat, B.; Mazarguil, H.; Vassart, G.; Parmentier, M.; Costentin, J. Isolation and structure of the endogenous agonist of opioid receptor-like ORLj receptor. Nature. 2002, 377, 532-535.

163. Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bun-zow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J. Jr; Civelli, O. Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science. 1995, 270, 792-794.

164. Henderson, G.; McKnight A.T., The orphan opioid receptor and its endogenous ligand: nociceptin/orphanin FQ. Trends Pharmacol. Sci. 1997, 18, 293-300.

Salt, T.E.; Hill, R.G. Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience. 1983, 10, 1083-1103.

Taylor, B.K.; McCarson, K.E. Neurokinin-1 receptor gene expression in the mouse dorsal horn increases with neuropathic pain. J. Pain. 2004, 5, 71-76.

Dionne, R.A.; Max, M.B.; Gordon, S.M.; Parada, S.; Sang, C.; Gracely, R.H.; Sethna,

N.F.; MacLean, D.B. The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin. Pharmacol. Ther. 1998, 64, 562-568.

Hill, R. NK1 (substance P) receptor antagonists: why are they not analgesic in humans? TiPS. 2000, 21, 244-246.

Walker, J.M.; Huang, S.M. Endocannabinoids in pain modulation. Prostaglandins Leukot. Essent. Fatty Acids. 2002, 66, 235-242.

Baker, D.; Pryce, G.; Giovannoni, G.; Thompson, A.J. The therapeutic potential of cannabis. Lancet Neurol. 2003, 2, 291-298.

Svendsen, K.B.; Jensen, T.S.; Bach, F.W. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double-blind placebo-controlled crossover trial. Br. Med. J. 2004, 329, 253.

Karst, M.; Salim, K.; Burstein, S.; Conrad, I.; Hoy, L.; Schneider, U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 2003, 290, 1757-1762.

Wade, A.; Crawford, G.M.; Angus, M.; Wilson, R.; Hamilton, L. A randomized, double-blind, 24-week study comparing the efficacy and tolerability of mirtazapine and paroxetine in depressed patients in primary care. Int. Clin. Psychopharmacol. 2003, 18, 133-141.

Zajicek, J.; Fox, P; Sanders, H.; Wright, D.; Vickery, J.; Nunn, A.; Thompson, A. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS): multicentre randomised placebo-controlled trial. Lancet 2003, 362, 1517-1526.

Ahmad S.; Dray, A. Novel G protein-coupled receptors as pain targets. Curr. Opin. Invest. Drugs. 2004, 5, 67-70.

Schwarz, J. Rationale for dopamine agonist use as monotherapy in Parkinson's disease. Curr. Opin. Neurol. 2003, 16, S27-S33.

Chen, L.-W.; Yung, K.K.L.; Chan, Y.S. Neurokinin peptides and neurokinin receptors as potential therapeutic intervention targets of basal ganglia in the prevention and treatment of Parkinson's disease. Curr. Drug Ther. 2004, 5, 197-206. Fox, S.H.; Henry, B.; Hill, M.P.; Peggs, D.; Crossman, A.R.; Brotchie, J.M. Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: evidence from the effects of the alpha(2) adrenoreceptor antagonist idazoxan. Movement Dis. 2001, 16, 642-650.

Bezard, E.; Brotchie, J.M.; Gross, C.E. Pathophysiology of levodopa-induced dys-kinesia: potential for new therapies. Nat. Rev. Neurosci. 2001, 2, 577-588. Huang, Y.; Cheung, L.; Rowe, D.; Halliday, G. Genetic contributions to Parkinson's disease. Brain Res. Brain Res. Rev. 2004, 46, 44-70.

Mufson, E.J.; Ginsberg, S.D.; Ikonomovic, M.D.; DeKosky, S.T. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 2003, 26, 233-242.

Fisher, A.; Pittel, Z.; Haring, R.; Bar-Ner, N.; Kliger-Spatz, M.; Natan, N.; Egozi, I.; Sonego, H.; Marcovitch, I.; Brandeis, R. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy. J. Mol. Neurosci. 2003, 20, 349-356.

183. Bodick, N.C.; Offen, W.W.; Levey, A.I.; Cutler, N.R.; Gauthier, S.G.; Satlin, A.; Shannon, H.E.; Tollefson, G.D.; Rasmussen, K.; Bymaster, F.P; Hurley, D.J.; Potter, W.Z.; Paul, S.M. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 1997, 54, 465-473.

184. Lazareno, S.; Popham, A.; Birdsall, N.J. Progress toward a high-affinity allosteric enhancer at muscarinic Ml receptors. J. Mol. Neurosci. 2003, 20, 363-367.

185. Riemer, C.; Borroni, E.; Levet-Trafit, B.; Martin, J.R.; Poli, S.; Porter, R.H.P; Bos, M. Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J. Med. Chem. 2003, 46, 1273-1276.

186. Rogers, D.C.; Hagan, J.J. 5-HT6 receptor antagonists enhance retention of a water maze task in the rat. Psychopharmacology. 2001, 158, 114-119.

187. Foley, A.G.; Murphy, K.J.; Hirst, W.D.; Gallagher, H.C.; Hagan, J.J.; Upton, N.; Walsh, F. S.; Regan C.M. The 5-HT6 receptor antagonist SB-271046 reverses scopo-lamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology. 2004, 29, 93-100.

188. Woolley, M.L.; Marsden, C.A.; Sleight, A.J.; Fone, K.C.F. Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04-6790. Psychopharmacology. 2003, 170, 358-367.

189. Lindner, M.D.; Hodges, D.B., Jr.; Hogan, J.B.; Orie, A.F.; Corsa, J.A.; Barten, D.M.; Polson, C.; Robertson, B.J.; Guss, V.L.; Gillman, K.W.; Starrett, J.E., Jr.; Gribkoff, V.K. Assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning. J. Pharmacol. Exp. Ther. 2003, 307, 682-691.

190. Schechter, L.E.; Dawson, L.A.; Harder, J.A. The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer's disease. Curr. Pharm. Design. 2002, 8, 139-145.

191. Tran, P.B.; Miller, R.J. Chemokine receptors: signposts to brain development and disease. Nat. Rev. Neurosci. 2003, 4, 444-455.

192. Ragozzino, D.; Renzi, M.; Giovanneli, A.; Eusebi, F. Stimulation of chemokine CXC receptor 4 induces synaptic depression of evoked parallel fibers inputs onto Purkinje neurons in mouse cerebellum. Neuroimmunology. 2002, 127, 30-36.

193. Xia, M.; Hyman, B.T. GROa/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways for tau hyperphospho-ryaltion: a role in Alzheimer's disease? J. Neuroimmunol. 2002, 122, 55-64.

194. Ueta, Y.; Ozaki, Y.; Saito, J. Novel G-protein coupled receptor ligands and neurohypophysial hormones. J. Neuroendocrinal. 2004, 16, 378-382.

195. Ellis, C. The state of GPCR research in 2004. Nat. Rev. Drug Disc. 2004, 3, 577-626.

196. Ma, P.; Zemmel, R. Value of novelty? Nat. Rev. Drug Disc. 2002, 1, 571-572.

197. Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P; Wilson, S.; Arch, J.R.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998, 92, 573-585.

198. Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; Fitch, T.E.; Nakazato, M.; Hammer, R.E.; Saper, C.B.; Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999, 98, 437-451.

199. Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P.J.; Nishino, S.; Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999, 98, 365-376.

200. Wise, A.; Jupe, S.C.; Rees, S. The identification of ligands at orphan G-protein coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 43-66.

201. Pickel, V.M.; Chan, J.; Kash, T.L.; Rodriguez, J.J.; MacKie, K. Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience. 2004, 127, 101-112.

202. Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; Boyle, N.; Pu, X.; Kouranova, E.; Lichtblau, H.; Ochoa, F.Y.; Branchek, T.A.; Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 8966-8971.

203. Lembo, P.M.; Grazzini, E.; Groblewski, T.; O'Donnell, D.; Roy, M.O.; Zhang, J.; Hoffert, C.; Cao, J.; Schmidt, R.; Pelletier, M.; Labarre, M.; Gosselin, M.; Fortin, Y.; Banville, D.; Shen, S.H.; Strom, P.; Payza, K.; Dray, A.; Walker, P.; Ahmad, S. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat. Neurosci. 2002, 5, 201-209.

204. (accessed July 2004).

8 Recombinant G Protein-Coupled Receptors for Drug Discovery

Was this article helpful?

0 0
Beat Depression Now

Beat Depression Now

Let me be up front. My intention is to sell you something. Normally, it's not wise to come out and say that. However, I can do so because I have such an incredible deal for you that you'd be crazy to pass on it.

Get My Free Ebook

Post a comment