Destroy Depression

Natural Treatment for Depression

Get Instant Access

1. Vassilatis, D.K.; Hohmann, J.G.; Zeng, H.; Li, F.; Ranchalis, J.E.; Mortrud, M.T.; Brown, A.; Rodriguez, S.S.; Weller, J.R.; Wright, A.C.; Bergmann, J.E.; Gaitanaris, G.A. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 4903-4908.

2. Kenakin, T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat. Rev. Drug Disc. 2003, 2, 429-438.

3. Sprouse, J.S.; Aghajanian, G.K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur. J. Pharmacol. 1986, 128 (3), 295-298.

4. Sprouse, J.S.; Reynolds, L.S.; Braselton, J.P. ; Rollema, H.; Zorn, S.H. Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsycho-pharmacology 1999, 21, 622-631.

5. Blier, P.; de Montigny, C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse 1987, 1, 470-480.

6. Doherty, J.; Dingledine, R. Functional interactions between cannabinoid and metabo-tropic glutamate receptors in the central nervous system. Curr. Opin. Pharmacol. 2003, 3, 46-53.

7. Varma, N.; Carlson, G.C.; Ledent, C.; Alger, B.E. Metabotropic glutamate receptors drive the endocannabinoid system in hippocampus. J. Neurosci. 2001, 21, RC188.

8. Morisset, S.; Rouleau, A.; Ligneau, X.; Gbahou, F.; Tardivel-Lacombe, J.; Stark, H.; Schunack, W.; Ganellin, C.R.; Schwartz, J.C.; Arrang, J.M. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 2000, 408, 860-864.

9. De Deurwaerdere, P.; Navailles, S.; Berg, K.A.; Clarke, W.P.; Spampinato, U. Constitutive activity of the serotonin2C receptor inhibits in vivo dopamine release in the rat striatum and nucleus accumbens. J. Neurosci. 2004, 24, 3235-3241.

10. Bai, M. Dimerization of G-protein-coupled receptors: roles in signal transduction. Cell Signal. 2004, 16, 175-186.

11. Bettler, B.; Kaupmann, K.; Mosbacher, J.; Gassmann, M. Molecular structure and physiological functions of GABA(B) receptors. Physiol. Rev. 2004, 84, 835-867.

12. Nicholas, A.P; Hokfely, T.; Pieribone, V.A. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. TiPS. 1996, 17, 245.

13. Smith, M.S.; Schambra, U.B.; Wilson, K.H.; Page, S.O.; Schwinn, D.A. Alpha 1-adrenergic receptors in human spinal cord: specific localized expression of mRNA encoding alpha1-adrenergic receptor subtypes at four distinct levels. Brain Res. Mol. Brain Res. 1999, 63, 254-261.

14. Hirasawa, A.; Horie, K.; Tanaka, T.; Takagaki, K.; Murai, M.; Yano, J.; Tsujimoto, G. Cloning, functional expression and tissue distribution of human cDNA for the alpha -1C adrenergic receptor. Biochem. Biophys. Res. Commun. 1993, 195, 902-909.

15. Scheinin, M.; Lomasney, J.W.; Hayden-Hixson, D.M.; Schambra, U.B.; Caron, M.G.; Lefkowitz, R.J.; Fremeau, R.T. Jr. Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res. Mol. Brain Res. 1994, 21, 133-149.

16. Vilaro, M.T.; Palacios, J.M.; Mengod, G. Multiplicity of muscarinic autoreceptor subtypes: comparison of the distribution of cholinergic cells and cells containing mRNA for five subtypes of muscarinic receptors in the brain. Brain Res. Mol. Brain Res., 1994, 21, 30-46.

17. Buckley, N.J.; Bonner, T.I.; Brann, M.R. Localization of a family of muscarinic receptor mRNAs in rat brain. J. Neurosci. 1988, 8, 4646-4652.

18. Wei, J.; Walton, E.A.; Milici, A.; Buccafusco, J.J. m1-m5 Muscarinic receptor distribution in rat CNS by RT-PCR and HPLC. J. Neurochem. 1994, 63, 815-821.

19. Weiner, D.M.; Levey, A.I.; Brann, M.R. Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 7050-7054.

20. Ellis, J. Muscarinic receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 349-371.

21. Valerio, A.; Belloni, M.; Gorno, M.L.; Tinti, C.; Memo, M.; Spano, P Dopamine D2, D3, and D4 receptor mRNA levels in rat brain and pituitary during aging. Neurobiol. Aging. 1994, 15, 713-719.

22. Fremeau, R.T.; Duncan, G.E.; Fornaretto, M.G.; Dearry, A.; Gingrich, J.A.; Brees, G.R.; Caron, M.G. Localization of Djdopamine receptor mRNA in brain supports a role in cognitive, affective and neuroendocrine aspects of dopaminergic neurotransmission. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 3772-3776.

23. van Dijken, H.; Dijk, J.; Voom, P; Holstege, J.C. Localization of dopamine D2 receptor in rat spinal cord identified with immunocytochemistry and in situ hybridization. Eur. J. Neurosci. 1996, 8, 621-628.

24. Mansour, A.; Meador-Woodruff, J.H.; Bunzow, J.R.; Civelli, O.; Akil, H.; Watson, S.J. Localization of dopamine D2 receptor mRNA and D1and D2 receptor binding in the rat brain and pituitary: an in situ hybridization receptor autoradiographic analysis. J. Neurosci. 1990, 10, 2587-2601.

25. Bouthenet, M.-L.; Souil, E.; Martres, M.-P.; Sokoloff, P.; Giros, B.; Schwartz, J.-C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with D2 receptor mRNA. Brain Res. 1991, 564, 203-219.

Matsumoto, M.; Hidaka, K.; Tada, S.; Tasaki, Y.; Yamaguchi, T. Low levels of mRNA for dopamine D4 receptor in human cerebral cortex and striatum. J. Neurochem. 1996, 66, 915-919.

Xie, G.X.; Jones, K.; Peroutka, S.J.; Palmer, PP Detection of mRNAs and alternatively spliced transcripts of dopamine receptors in rat peripheral sensory and sympathetic ganglia. Brain Res. 1998, 785, 129-135.

Meador-Woodruff, J.H.; Mansour, A.; Grandy, D.K.; Damask, S.P; Civelli, O.; Watson, S.J., Jr. Distribution of D5 dopamine receptor mRNA in the rat brain. Neurosci. Lett. 1992, 145, 209-212.

Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637-672.

Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol. 1999, 55, 1101-1107.

Kashiba, H.; Fukui, H.; Morikawa, Y.; Senba, E. Gene expression of histamine H1 receptor in guinea pig primary sensory neurons: a relationship between H1 receptor mRNA-expressing neurons and peptidergic neurons. Mol. Brain Res. 1999, 66, 24-34.

Pillot, C.; Heron, A.; Cochois, V.; Tardivel-Lacombe, J.; Ligneau, X.; Schwartz, J.C.; Arrang, J.M. A detailed mapping of the histamine H(3) receptor and its gene transcripts in rat brain. Neuroscience 2002, 114, 173-193.

Murakami, H.; Sun-Wada, G.H.; Matsumoto, M.; Nishi, T.; Wada, Y.; Futai, M. Human histamine H2 receptor gene: multiple transcription initiation and tissue-specific expression. FEBS Lett. 1999, 451, 327-331.

Oda, T.; Morikawa, N.; Saito, Y.; Masuho, Y.; Matsumoto, S. Molecular cloning and characterization of a novel type of histamine receptor preferentially expressed in leukocytes. J. Biol. Chem. 2000, 275, 36781-36786.

Saudou, F.; Hen, R. 5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates. Neurochem. Int. 1994, 25, 503-532.

Roberts, C.; Price, G.W.; Middlemiss, D.N. Serotonin receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. pp. 439-468. Ambrosini, E.; Aloisi, F. Chemokines and glial cells: a complex network in the central nervous system. Neurochem. Res. 2004, 29, 1017-1038.

Gustafson, E.L.; Smith, K.E.; Durkin, M.M.; Gerald, C.; Branchek, T.A. Distribution of a rat galanin receptor mRNA in rat brain. Neuroreport. 1996, 7, 953-957. O'Donnell, D.; Ahmad, S.; Wahlestedt, C.; Walker, P. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J. Comp. Neurol. 1999, 409, 469-481.

Mennicken, F.; Hoffert, C.; Pelletier, M.; Ahmad, S.; O'Donnell, D. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J. Chem. Neuroanat. 2002, 24, 257-268.

Roselli-Rehfuss, L.; Mountjoy, K.G.; Robbins, L.S.; Mortrud, M.T.; Low, M.J.; Tatro, J.B.; Entwistle, M.L.; Simerly, R.B.; Cone, R.D. Identification of a receptor for g-melanotropin and other propiomelanocortin peptides in the hypothalamus and limbic system. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 8856-8860.

Mountjoy, K.G.; Mortrud, M.T.; Low, M.J.; Simerly, R.B.; Cone, R.D. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 1994, 8, 1298-1308.

43. Griffon, N.; Mignon, V.; Facchinetti, P.; Diaz, J.; Schwartz, J. C.; Sokoloff, P. Molecular cloning and characterization of the rat fifth melanocortin receptor. Biochem. Biophys. Res. Commun. 1994, 200, 1007-1014.

44. Howard, A.D.; Wang, R.; Pong, S.S.; Mellin, T.N.; Strack, A.; Guan, X.M.; Zeng, Z.; Williams, D.L. Jr.; Feighner, S.D.; Nunes, C.N.; Murphy, B.; Stair, J.N.; Yu, H.; Jiang, Q.; Clements, M.K.; Tan, C.P; McKee, K.K.; Hreniuk, D.L.; McDonald, T.P.; Lynch, K.R.; Evans, J.F.; Austin, C.P; Caskey, C.T.; Van der Ploeg, L.H.; Liu, Q. Identification of receptors for neuromedin U and its role in feeding. Nature 2000, 406, 70-74.

45. Raddatz, R.; Wilson, A.E.; Artymyshyn, R.; Bonini, J.A.; Borowsky, B.; Boteju, L.W.; Zhou, S.; Kouranova, E.V.; Nagorny, R. Guevarra, M.S.; Dai, M.; Lerman, G.S.; Vaysse, PJ.; Branchek, T.A.; Gerald, C.; Forray, C.; Adham, N. Identification and characterization of two neuromedin U receptors differentially expressed in peripheral tissues and the central nervous system. J. Biol. Chem. 2000, 275, 32452-32459.

46. Parker, R.M.C.; Herzog, H. Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur. J. Neurosci. 1999, 11, 1431.

47. Landry, M.; Holmberg, K.; Zhang, X.; Hokfelt, T. Effect of axotomy on expression of NPY, galanin, and NPY Y1 and Y2 receptors in dorsal root ganglia and the superior cervical ganglion studied with double-labeling in situ hybridization and immunohis-tochemistry. Exp. Neurol. 2000, 162, 361-384.

48. Vincent, J.P.; Mazella, J.; Kitabgi, P. Neurotensin and neurotensin receptors. Trends Pharmacol. Sci. 1999, 20, 302-309.

49. Walker, N.; Lepee-Lorgeoux, I.; Fournier, J.; Betancur, C.; Rostene, W.; Ferrara, P; Caput, D. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. Brain Res. Mol. Brain Res. 1998, 57, 193-200.

50. Mansour, A.; Fox, C.A.; Akil, H.; Watson, S.J. Opioid-receptor mRNA expression in the rat CNS: anatomical and functional implications. Trends Neurosci. 1995, 18, 22-29.

51. Neal, C.R.; Mansour, A.; Reinscheid, R.; Nothacker, H. P.; Civelli, O.; Akil, H.; Watson, S.J. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with 125I-[14Tyr]-orphanin FQ binding. J. Comp. Neurol. 1999, 412, 563-605.

52. Tsuchida, K.; Shigemoto, R.; Yokota, Y.; Nakanishi, S. Tissue distribution and quantitation of the mRNAs for three rat tachykinin receptors. Eur. J. Biochem. 1990, 193, 751-757.

53. Lu, Q.; Straiker, A.; Lu, Q.; Maguire, G. Expression of CB2 cannabinoid receptor mRNA in adult rat retina. Vis. Neurosci. 2000, 17, 91-95.

54. Mailleux, P; Vanderhaeghen, J.-J. Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry. Neuroscience. 1992, 48, 655-668.

55. Latini, S.; Pazzagli, M; Pepeu, G.; Pedata, F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen. Pharmacol. 1996, 27, 925-933.

56. Dixon, A.K.; Gubitz, A.K.; Sirinathsinghji, D.J.; Richardson, PJ.; Freeman, T.C. Tissue distribution of adenosine receptor mRNAs in the rat. Br. J. Pharmacol. 1996, 118, 1461-1468.

57. Fredholm, B.B. Adenosine receptors, in Understanding G Protein-Coupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 191-204.

Mazzucchelli, C.; Pannacci, M.; Nonno, R.; Lucini, V.; Fraschini, F.; Stankov, B.M. The melatonin receptor in the human brain: cloning experiments and distribution studies. Brain Res. Mol. Brain Res. 1996, 39, 117-126.

Reppert, S.M.; Godson, C.; Mahle, C.D.; Weaver, D.R.; Slaugenhaupt, S.A.; Gusella, J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: the Mel~b melatonin receptor. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 8734-8738.

Valerio, A.; Paterlini, M.; Boifava, M.; Memo, M.; Spano, PF. Metabotropic glutamate receptor mRNA expression in rat spinal cord. Neuroreport. 1997, 8, 2695-2699. Ohishi, H.; Akazawa, C.; Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J. Comp. Neurol. 1995, 360, 555-570.

Testa, C.M.; Standaert, D.G.; Young, A.B.; Penney, J.B. Jr. Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 1994, 14, 3005-3018.

Fotuhi, M.; Standaert, D.G.; Testa, C.M.; Penney, J.B., Jr.; Young, A.B. Differential expression of metabotropic glutamate receptors in the hippocampus and entorhinal cortex of the rat. Brain Res. Mol. Brain Res. 1994, 21, 283-292.

Tanabe, Y.; Nomura, A.; Masu, M.; Shigemoto, R.; Mizuno, N.; Nakanishi, S. Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J. Neurosci. 1993, 13,


Pin, J.-P.; Bockaert, J. Metabotropic glutamate receptors, in Understanding G ProteinCoupled Receptors and Their Role in the CNS. Pangalos, M.N., Davies, C.H., Eds., Oxford University Press, New York, 2002; pp. 588-616.

Benke, D.; Honer, M.; Michel, C.; Bettler, B.; Mohler, H. g-Aminobutyric acid type B receptor splice variant proteins GBR1a and GBR1b are both associated with GBR2 in situ and display differential regional and subcellular distribution J. Biol. Chem. 1999, 274, 27323-27330.

Agnati, L.F.; Ferre, S.; Lluis, C.; Franco, R.; Fuxe, K. Molecular mechanisms and therapeutical implications of intramembrane receptor/receptor interactions among heptahelical receptors with examples from the striatopallidal GABA neurons. Pharmacol. Rev. 2003, 55, 509-550.

Neubig, R.P.; Siderovski, D.P Regulators of G-protein signaling as new central nervous system drug targets. Nat. Rev. Drug Dis. 2002, 1, 187-197.

Cosoff, S.J.; Hafner, R.J. The prevalence of comorbid anxiety in schizophrenia, schizoaffective disorder, and bipolar disorder. Austral. NZ J. Psychiatr. 1998, 32,

Wetherell, J.L.; Palmer, B.W.; Thorp, S.R.; Patterson, T.L. Golshan, S.; Jeste, D.V. Anxiety symptoms and quality of life in middle-aged and older outpatients with schizophrenia and schizoaffective disorder. J. Clin. Psychiatr. 2003, 64,1476-1482. Mclntyre, R.; Katzman, M. The role of atypical antipsychotics in bipolar depression and anxiety disorders. Bipolar Disord. 2003, 5 (Suppl. 2), 20-35. Benes, F.M.; Tamminga, C.A. Neurobiology of schizophrenia, in Psychiatry as a Neuroscience, John Wiley & Sons, New York, 2002; pp. 197-236. Owen, M.J.; Williams, N.M.; O'Donovan, M.C. The molecular genetics of schizophrenia: new findings promise new insights. Mol. Psychiatr. 2004, 9, 14-27. Capuano, B.; Crosby, I.T.; Lloyd, E.J. Schizophrenia: genesis, receptorology, and current therapeutics. Curr. Med. Chem. 2002, 9, 521-548.

75. National Institutes of Mental Health Psychoactive Drug Screening Program; PDSP Ki database:

76. Tamminga, C.A. Similarities and differences among antipsychotics. J. Clin. Psychiatr.

77. Arana, G.W. An overview of side effects caused by typical antipsychotics. J. Clin. Psychiatr. 2000, 61 (Suppl. 8), 5-11.

78. Roth, B.L.; Sheffler, D.; Potkin, S.G. Atypical antipsychotic drug actions: unitary or multiple mechanisms for 'atypicality'? Clin. Neurosci. Res. 2003, 31, 108-117.

79. Kapur, S.; Remmington, G. Dopamine D(2) receptors and their role in atypical antipsychotic action: still necessary and may even be sufficient. Biol. Psychiatr. 2001, 50, 873-883.

80. Roth, B.L.; Sheffler, D.J.; Kroeze, W.K. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat. Rev. Drug Dis.

81. Kane, J.; Honigfield, G.; Singer, J.; Meltzer, H.Y. Clozapine for the treatment-resistant schizophrenic: a double-blind comparison with chlorpromazine. Arch. Gen. Psychiatr. 1988, 45, 789-796.

82. Meltzer, H.Y.; Alphs, L.; Green, A.I.; Altamura, A.C.; Anand, R.; Bertoldi, A.; Bourgeois, M.; Chouinard, G.; Islam, M.Z.; Kane, J.; Krishnan, R.; Lindenmayer, J.P.; Potkin, S. Clozapine treatment for suicidality in schizophrenia: International Suicide Prevention Trial. Arch. Gen. Psychiatr. 2003, 60, 82-91.

83. Kapur, S.; Zipursky, R.; Jones, C. et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch. Gen. Psychiatr. 2000, 57, 553-559.

84. Carlsson, A. Current status of the dopamine hypothesis of schizophrenia. Neuropsy-chopharmacology. 1988, 1, 179-186.

85. Shapiro, D.; Renock, S.; Arrington, E.; Chiodo, L.A.; Liu, L.-X.; Sibley, D.R.; Roth, B.L.; Mailman, R. Aripiprazole: a novel antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology. 2003, 28, 1400-1411.

86. Milligan, G. Constitutive activity and inverse agonists of G protein coupled receptors: a current perspective. Mol. Pharmacol. 2003, 64, 1271-1276.

87. Rauser, L.; Savage, J.E.; Meltzer, H.Y.; Roth, B.L. Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J. Pharmacol. Exp. Ther. 2001, 299, 83-89.

88. Roth, B.L.; Hanizavareh, S.M.; Blum, A.E. Serotonin receptors represent highly favorable molecular targets for cognitive enhancement in schizophrenia and other disorders. Psychopharmacology. 2004, 174,17-24.

89. Mortimer, A.M.; Barnes, T.R.E. Serotonergic Mechanisms in Antipsychotic Treatment. Marcel Dekker, New York, 1996; pp. 311-330.

90. Meltzer, H.Y.; Arvanitis, L.; Bauer, D.; Rein, W. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Am. J. Psychiatr. 2004, 161, 975-984.

91. Corrigan, M.H.; Gallen, C.C.; Bonura, M.L.;, Merchant, K.M. Effectiveness of the selective D4 antagonist sonepiprazole in schizophrenia: a placebo-controlled trial. Biol. Psychiatr. 2004, 55, 445-451.

92. Serretti, A.; Artioli, P; De Ronchi, D. The 5HT2C receptor as a target for mood disorders. Expert Opin. Ther. Targets. 2004, 8, 15-23.

93. Sodhi, M.S.; Burnet, PW.; Makoff, A.J.; Kerwin, R.W.; Harrison, P.J. RNA editing of the 5HT2C receptor is reduced in schizophrenia. Mol. Psychiatr. 2001, 6, 373-379.

Burns, C.M.; Chu, H.; Rueter, S.M.; Hutchinson, L.K.; Canton, H.; Sanders-Bush, E.; Emeson, R.B. Regulation of serotonin 2C receptor G-protein coupling by RNA editing. Nature. 1997, 387, 303-308.

Mirza, N.R.; Peters, D.; Sparks, R.G. Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev. 2003, 9, 159-186. van der Stelt, M.; Di Marzo, V. The endocannabinoid system in the basal ganglia and in the mesolimbic reward system: implications for neurological and psychiatric disorders. Eur. J. Pharmacol. 2003, 480, 133-150.

Dean, B.; Sundram, S.; Bradbury, R; Scarr, E.; Copolov, D. Studies on [3H]CP-55940 binding in the human central nervous system: regional specific changes in density of cannabinoid-1 receptors associated with schizophrenia and cannabis use. Neuroscience. 2001, 103 (1), 9-15.

Andersen, M.B.; Fuxe, K.; Werge, T.; Gerlach, J. The adenosine A2a receptor agonist CGS21680 exhibits antipsychotic-like activity in Cebus paella monkeys. Behav. Pharmacol. 2002, 13, 639-644.

Ferre, S.; Ciruela, F.; Canals, M.; Marcellino, D.; Burgueno, J,; Casado, V.; Hillion, J.; Torvinen, M.; Fanelli, F.; de Benedetti, P.; Goldberg, S.R.; Bouvier, M.; Fuxe, K.; Agnati, L.F.; Lluis, C. Franco, R.; Woods, A. Adenosine A2a-dopamine D2 receptor-receptor heteromers: targets for neuro-psychiatric disorders. Parkinsonism Rel. Dis. 2004, 10, 265-271.

Mortimer, A.M. Novel antipsychotics in schizophrenia. Exp. Opin. Invest. Drugs. 2004, 13, 315-329.

Williams, G.V.; Rao, S.G.; Goldman-Rakic, P.S. The physiological role of 5-HT2A receptors in working memory. J. Neurosci. 2002, 22, 2843-2854. Woolley, M.L.; Bentley, J.C.; Sleight, A.J.; Marsden, C.A.; Fone, K.C. A role for 5-HT6 receptors in retention of spatial learning in the Morris water maze. Neurophar-macology. 2001, 41, 210-219.

Goldman-Rakic, PS.; Castner, S.A.; Svensson, T.H.; Siever, L.J.; Williams, G.V. Targeting the dopamine D1 receptor in schizophrenia: insights for cognitive dysfunction. Psychopharmacology. 2004, 174, 3-16.

Wang, M.; Vijayraghavan, S.; Goldman-Rakic, PS. Selective D2 receptor actions on the functional circuitry of working memory. Science. 2004, 303, 853-856. Svensson, T.H. Alpha-adrenoceptor modulation hypothesis of antipsychotic atypical-ity. Prog. Neuropsychopharmacol. Biol. Psychiatr. 2003, 27, 1145-1158. Seeman, P.; Lee, T.; Chan-Wong, M.; Wong, K. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature. 1976, 261, 717-719.

Creese, I.; Burt, D.R.; Snyder, S.H. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science. 1976, 192, 481-483. Kebabian, J.W.; Calne, D.B. Multiple receptors for dopamine. Nature. 1979, 277, 93-96. Bunzow, J.R.; Van Tol, H.H.; Grandy, D.K.; Albert, P.; Salon, J.; Christie, M.; Machida, C.A.; Neve, K.A.; Civelli, O. Cloning and expression of a rat D2 dopamine receptor cDNA. Nature. 1998, 336, 783-787.

Emilien, G.; Maloteaux, J.M.; Geurts, M.; Hoogenberg, K.; Cragg, S. Dopamine receptors: physiological understanding to therapeutic intervention potential. Pharmacol. Ther. 1999, 84, 133-156.

Nieoullon, A. Dopamine and the regulation of cognition and attention. Prog. Neuro-biol. 2002, 67, 53-83.

Floran, B.; Floran, L.; Erlij, D.; Aceves, J. Activation of dopamine D4 receptors modulates [3H]GABA release in slices of the rat thalamic reticular nucleus. Neuro-pharmacology. 2004, 46, 497-503.

113. Powell, S.B.; Paulus, M.P.; Hartman, D.S.; Godel, T.; Geyer, M.A. RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology. 2003, 44, 473-481.

114. Oak, J.N.; Oldenhof, J.; Van Tol, H.H. The dopamine D(4) receptor: one decade of research Eur. J. Pharmacol. 2000, 405, 303-327.

115. Jackson, D.M.; Westlind-Danielsson, A. Dopamine receptors: molecular biology, biochemistry and behavioural aspects. Pharmacol. Ther. 1994, 64, 291-370.

116. Hartman, D.S.; Civelli, O. Molecular attributes of dopamine receptors: new potential for antipsychotic drug development. Ann. Med. 1996, 28, 211-219.

117. Simpson, M.M.; Ballesteros, J.A.; Chiappa, V.; Chen, J.; Suehiro, M.; Hartman, D.S.; Godel, T.; Snyder, L.A.; Sakmar, T.P; Javitch, J.A. Dopamine D4/D2 receptor selectivity is determined by a divergent aromatic microdomain contained within the second, third, and seventh membrane-spanning segments. Mol. Pharmacol. 1999, 56, 1116-1126.

118. Newman-Tancredi, A.; Audinot-Bouchez, V.; Gobert, A.; Millan, M.J. Noradrenaline and adrenaline are high affinity agonists at dopamine D4 receptors. Eur. J. Pharmacol. 1997, 319, 379-383.

119. Lanau, F.; Zenner, M.T.; Civelli, O.; Hartman, D.S. Epinephrine and norepinephrine act as potent agonists at the recombinant human dopamine D4 receptor. J. Neurochem. 1997, 68, 804-812.

120. Catalano, M.; Nobile, M.; Novelli, E.; Nothen, M.M.; Smeraldi, E. Distribution of a novel mutation in the first exon of the human dopamine D4 receptor gene in psychotic patients. Biol. Psychiatr. 1993, 34, 459-464.

121. Zenner, M.T.; Nobile, M.; Henningsen, R.; Smeraldi, E.; Civelli, O.; Hartman, D.S.; Catalano, M. Expression and characterization of a dopamine D4R variant associated with delusional disorder. FEBS Lett. 1998, 422, 146-150.

122. Ding, Y.C.; Chi, H.C.; Grady, D.L.; Morishima, A.; Kidd, J.R.; Kidd, K.K.; Flodman, P; Spence, M.A.; Schuck, S.; Swanson, J.M.; Zhang, Y.P.; Moyzis, R.K. Evidence of positive selection acting at the human dopamine receptor D4 gene locus. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 309-314.

123. Grady, D.L.; Chi, H.C.; Ding, Y.C.; Smith, M.; Wang, E.; Schuck, S.; Flodman, P.; Spence, M.A.; Swanson, J.M.; Moyzis, R.K. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol. Psychiatr. 2003, 8, 536-545.

124. Lichter, J.B.; Barr, C.L.; Kennedy, J.L.; Van Tol, H.H.; Kidd, K.K.; Livak, K.J. A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum. Mol. Genet. 1993, 2, 767-773.

125. Benjamin, J.; Li, L.; Patterson, C.; Greenberg, B.D.; Murphy, D.L.; Hamer, D.H. Population and familial association between the D4 dopamine receptor gene and measures of novelty seeking. Nat. Genet. 1996, 12, 81-84.

126. Ebstein, R.P.; Nemanov, L.; Klotz, I.; Gritsenko, I.; Belmaker, R.H. Additional evidence for an association between the dopamine D4 receptor (D4DR) exon III repeat polymorphism and the human personality trait of novelty seeking. Mol. Psychiatr. 1997, 2, 472-477.

127. Langley, K.; Marshall, L.; van den Bree, M.; Thomas, H.; Owen, M.; O'Donovan, M.; Thapar, A. Association of the dopamine D4 receptor gene 7-repeat allele with neuropsy-chological test performance of children with ADHD. Am. J. Psychiatr. 2004, 61, 133-138.

128. Diaz-Anzaldua, A.; Joober, R.; Riviere, J.B.; Dion, Y.; Lesperance, P.; Richer, F.; Chouinard, S.; Rouleau, G.A. Tourette syndrome and dopaminergic genes: a family-based association study in the French Canadian founder population. Mol. Psychiatr. 2004, 9, 272-277.

129. Wang, E.; Ding, Y.C.; Flodman, P.; Kidd, J.R.; Kidd, K.K.; Grady, D.L.; Ryder, O.A.; Spence, M.A.; Swanson, J.M.; Moyzis, R.K. The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am. J. Hum. Genet. 2004, 74, 931-944.

130. Nothen, M.M.; Cichon, S.; Hemmer, S.; Hebebrand, J.; Remschmidt, H.; Lehmkuhl, G.; Poustka, F.; Schmidt, M.; Catalano, M.; Fimmers, R. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Hum. Mol. Genet. 1994, 3, 2207-2212.

131. Zubenko, G.S.; Maher, B.S.; Hughes, H.B., III; Zubenko, W.N.; Scott-Stiffler, J.; Marazita, M.L. Genome-wide linkage survey for genetic loci that affect the risk of suicide attempts in families with recurrent, early-onset, major depression. Am. J. Med. Genet. 2004, 15, 47-54.

132. Wong, M.L.; Licinio, J. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat. Rev. Drug Discov. 2004, 3, 136-151.

133. Kuhn, R. Uber die behandlung depressives zustande mit einem iminobenzylderivat. Schwiez Med.Wochenschr. 1957, 87, 1135-1140.

134. Pacher P.; Kecskemeti, I. Trends in development of new antidepressants: is there a light at the end of the tunnel? Curr. Med. Chem. 2004, 11, 925-943.

135. Kent, J.M. SNaRIs, NaSSAs, and NaRIs: new agents for the treatment of depression. Lancet 2000, 355, 911-918.

136. Millan, M.J. Improving the treatment of schizophrenia: focus on serotonin (5-HT)1A receptors. J. Pharmacol. Exp. Ther. 2000, 295, 853-861.

137. Hindmarch, I. Beyond the monoamine hypothesis: mechanisms, molecules, and methods. Eur. Psychiatr. 2002, 17 (Suppl. 3), 294-299.

138. Duffy, R. Potential therapeutic targets for neurokinin-1 receptor antagonists. Exp. Opin. Emerg. Drugs. 2004, 9, 9-21.

139. Stout, S.C.; Owens, M.J.; Nemeroff, C.B. Neurokinin 1 receptor antagonists as potential antidepressants. Annu. Rev. Pharmacol. Toxicol. 2001, 41, 877-906.

140. Rupniak, N.M.; Kramer, M.S. Discovery of the anti-depressant and anti-emetic efficacy of substance P receptor (NK1) antagonists. Trends Pharmacol. Sci. 1999, 20, 485-490.

141. Rupniak, N.M.; Carlson, E.C.; Harrison, T.; Oates, B.; Seward, E.; Owen, S.; de Felipe, C.; Hunt, S.; Wheeldon, A. Pharmacological blockade or genetic deletion of substance P (NK1) receptors attenuates neonatal vocalization in guinea pigs and mice. Neuropharmacology. 2000, 39, 1413-1421.

142. Kramer, M.S.; Cutler, N.; Feighner, J.; Shrivastava, R.; Carman, J.; Sramek, J.J.; Reines, S.A.; Liu, G.; Snavely, D.; Wyatt-Knowles, E.; Hale, J.J.; Mills, S.G.; Mac-Coss, M.; Swain, C.J.; Harrison, T.; Hill, R.G.; Hefti, F.; Scolnick, E.M.; Cascieri, M.A.; Chicchi, G.G.; Sadowski, S.; Williams, A.R.; Hewson, L.; Smith, D.; Carlson, E.J.; Hargreaves, R.J.; Rupniak, N.M.J. Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science. 1998, 281, 1640-1645.

143. Kramer, M.S.; Winokur, A.; Kelsey, J.; Preskorn, S.H.; Rothschild, A.J.; Snavely, D.; Ghosh, K.; Ball, W. A.; Reines, S.A.; Munjack, D.; Apter, J.T.; Cunningham, L.; Kling, M.; Bari, M.; Getson, A.; Lee, Y. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacol-ogy. 2004, 29, 385-392.

144. Gold, P.W.; Wong, M.L.; Chrousos, G.; Licinio, J. Stress system abnormalities in melancholic and atypical depression: molecular, pathophysiological, and therapeutic implications. Mol. Psychol. 1996, 1, 257-264.

145. Strohle, A.; Holsboer, F. Stress responsive neurohormones in depression and anxiety. Pharmacopsychiatry 2003, 36 (Suppl. 3), S207-S214.

146. Zobel, A.W.; Nickel, T.; Kunzel, H.E.; Ackl, N.; Sonntag, A.; Ising, M.; Holsboer, F. Effects of the high-affinity corticotrophin-releasing hormone receptor 1 antagonist R-121919 in major depression: the first 20 patients. J. Psych. Res. 2000, 34, 171-181.

147. Bymaster, F.P.; McNamara, R.K.; Tran, P.V. New approaches to developing antide-pressants by enhancing monoaminergic neurotransmission. Exp. Opin. Invest. Drugs. 2003, 12, 531-543.

148. Gorwood, P. Generalized anxiety disorder and major depressive disorder comorbidity: an example of genetic pleiotropy? Eur. Psychiatr. 2004, 19, 27-33.

149. Zorrilla, E.P.; Koob, G.F. The therapeutic potential of CRF1 antagonists for anxiety. Exp. Opin. Invest. Drugs. 2004, 13, 799-828.

150. Blier, P; Gobbi, G.; Haddjeri, N.; Santarelli, L.; Mathew, G.; Hen, R. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant-anxiolytic response. Rev. Psychiatr. Neurosci. 2004, 29, 208-218.

151. Millan, M.J. The neurobiology and control of anxious states. Prog. Neurobiol. 2003, 70, 83-244.

152. Fields, H. State-dependent opioid control of pain. Nat. Rev. Neurosci. 2004, 5, 565-575.

153. Gaveriaux-Ruff, C.; Kieffer, B.L. Opioid receptor genes inactivated in mice: the highlights. Neuropeptides. 2002, 36, 62-71.

154. Pan, Y.X.; Xu, J.; Mahurter, L.; Xu M.; Gilbert, A.K.; Pasternak, G.W. Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem. Biophys. Res. Commun. 2003, 301, 1057-1061.

155. Rapaka, R.S.; Porreca, F. Development of delta opioid peptides as nonaddicting analgesics. Pharm. Res. 1991, 8, 1-8.

156. Scherrer, G.; Befort, K.; Contet, C.; Becker, J.; Matifas, A.; Kiefferk B. The delta agonists DPDPE and deltorphin II recruit predominantly mu receptors to produce thermal analgesia: a parallel study of mu, delta and combinatorial opioid receptor knockout mice. Eur. J. Neurosci. 2004, 19, 2239-2248.

157. Traynor, J.R.; Elliott, J. 5-Opioid receptor subtypes and cross-talk with m-receptors. TiPS. 1993, 14, 84-86.

158. He, L.; Lee, N.M. Delta opioid receptor enhancement of mu opioid receptor-induced antinociception in spinal cord. J. Pharmacol. Exp. Ther. 1998, 285, 1181-1186.

159. Gomes, I.; Gupta, A.; Filipovska, J.; Szeto, H.H.; Pintar, J.E.; Devi, L.A. A role for heterodimerization of mu and delta opiate receptors in enhancing morphine analgesia. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5135-5159.

160. Cheng, P.Y.; Liu-Chen, L.Y.; Pickel, V.M. Dual ultrastructural immunocytochemical labeling of mu and delta opioid receptors in the superficial layers of the rat cervical spinal cord. Brain Res. 1997, 778, 367-380.

161. Mollereau, C.; Parmentier, M.; Mailleux, P; Butour, J.L.; Moisand, C.; Chalon, P; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994, 341, 33-38.

162. Meunier, J.-Cl.; Mollereau, C.; Toll, L.; Suaudeau, Ch.; Moisand, Ch.; Alvinerie, P; Butour, J.-L.; Guillemot, J. Cl.; Ferrara, P.; Monsarrat, B.; Mazarguil, H.; Vassart, G.; Parmentier, M.; Costentin, J. Isolation and structure of the endogenous agonist of opioid receptor-like ORLj receptor. Nature. 2002, 377, 532-535.

163. Reinscheid, R.K.; Nothacker, H.P.; Bourson, A.; Ardati, A.; Henningsen, R.A.; Bun-zow, J.R.; Grandy, D.K.; Langen, H.; Monsma, F.J. Jr; Civelli, O. Orphanin FQ: a neuropeptide that activates an opioid-like G protein-coupled receptor. Science. 1995, 270, 792-794.

164. Henderson, G.; McKnight A.T., The orphan opioid receptor and its endogenous ligand: nociceptin/orphanin FQ. Trends Pharmacol. Sci. 1997, 18, 293-300.

Salt, T.E.; Hill, R.G. Neurotransmitter candidates of somatosensory primary afferent fibres. Neuroscience. 1983, 10, 1083-1103.

Taylor, B.K.; McCarson, K.E. Neurokinin-1 receptor gene expression in the mouse dorsal horn increases with neuropathic pain. J. Pain. 2004, 5, 71-76.

Dionne, R.A.; Max, M.B.; Gordon, S.M.; Parada, S.; Sang, C.; Gracely, R.H.; Sethna,

N.F.; MacLean, D.B. The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin. Pharmacol. Ther. 1998, 64, 562-568.

Hill, R. NK1 (substance P) receptor antagonists: why are they not analgesic in humans? TiPS. 2000, 21, 244-246.

Walker, J.M.; Huang, S.M. Endocannabinoids in pain modulation. Prostaglandins Leukot. Essent. Fatty Acids. 2002, 66, 235-242.

Baker, D.; Pryce, G.; Giovannoni, G.; Thompson, A.J. The therapeutic potential of cannabis. Lancet Neurol. 2003, 2, 291-298.

Svendsen, K.B.; Jensen, T.S.; Bach, F.W. Does the cannabinoid dronabinol reduce central pain in multiple sclerosis? Randomised double-blind placebo-controlled crossover trial. Br. Med. J. 2004, 329, 253.

Karst, M.; Salim, K.; Burstein, S.; Conrad, I.; Hoy, L.; Schneider, U. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 2003, 290, 1757-1762.

Wade, A.; Crawford, G.M.; Angus, M.; Wilson, R.; Hamilton, L. A randomized, double-blind, 24-week study comparing the efficacy and tolerability of mirtazapine and paroxetine in depressed patients in primary care. Int. Clin. Psychopharmacol. 2003, 18, 133-141.

Zajicek, J.; Fox, P; Sanders, H.; Wright, D.; Vickery, J.; Nunn, A.; Thompson, A. Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS): multicentre randomised placebo-controlled trial. Lancet 2003, 362, 1517-1526.

Ahmad S.; Dray, A. Novel G protein-coupled receptors as pain targets. Curr. Opin. Invest. Drugs. 2004, 5, 67-70.

Schwarz, J. Rationale for dopamine agonist use as monotherapy in Parkinson's disease. Curr. Opin. Neurol. 2003, 16, S27-S33.

Chen, L.-W.; Yung, K.K.L.; Chan, Y.S. Neurokinin peptides and neurokinin receptors as potential therapeutic intervention targets of basal ganglia in the prevention and treatment of Parkinson's disease. Curr. Drug Ther. 2004, 5, 197-206. Fox, S.H.; Henry, B.; Hill, M.P.; Peggs, D.; Crossman, A.R.; Brotchie, J.M. Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: evidence from the effects of the alpha(2) adrenoreceptor antagonist idazoxan. Movement Dis. 2001, 16, 642-650.

Bezard, E.; Brotchie, J.M.; Gross, C.E. Pathophysiology of levodopa-induced dys-kinesia: potential for new therapies. Nat. Rev. Neurosci. 2001, 2, 577-588. Huang, Y.; Cheung, L.; Rowe, D.; Halliday, G. Genetic contributions to Parkinson's disease. Brain Res. Brain Res. Rev. 2004, 46, 44-70.

Mufson, E.J.; Ginsberg, S.D.; Ikonomovic, M.D.; DeKosky, S.T. Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 2003, 26, 233-242.

Fisher, A.; Pittel, Z.; Haring, R.; Bar-Ner, N.; Kliger-Spatz, M.; Natan, N.; Egozi, I.; Sonego, H.; Marcovitch, I.; Brandeis, R. M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer's disease: implications in future therapy. J. Mol. Neurosci. 2003, 20, 349-356.

183. Bodick, N.C.; Offen, W.W.; Levey, A.I.; Cutler, N.R.; Gauthier, S.G.; Satlin, A.; Shannon, H.E.; Tollefson, G.D.; Rasmussen, K.; Bymaster, F.P; Hurley, D.J.; Potter, W.Z.; Paul, S.M. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch. Neurol. 1997, 54, 465-473.

184. Lazareno, S.; Popham, A.; Birdsall, N.J. Progress toward a high-affinity allosteric enhancer at muscarinic Ml receptors. J. Mol. Neurosci. 2003, 20, 363-367.

185. Riemer, C.; Borroni, E.; Levet-Trafit, B.; Martin, J.R.; Poli, S.; Porter, R.H.P; Bos, M. Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6-pyrrolidin-1-ylpyridine-4-sulfonyl)phenylamine, a potent and selective 5-HT6 receptor antagonist. J. Med. Chem. 2003, 46, 1273-1276.

186. Rogers, D.C.; Hagan, J.J. 5-HT6 receptor antagonists enhance retention of a water maze task in the rat. Psychopharmacology. 2001, 158, 114-119.

187. Foley, A.G.; Murphy, K.J.; Hirst, W.D.; Gallagher, H.C.; Hagan, J.J.; Upton, N.; Walsh, F. S.; Regan C.M. The 5-HT6 receptor antagonist SB-271046 reverses scopo-lamine-disrupted consolidation of a passive avoidance task and ameliorates spatial task deficits in aged rats. Neuropsychopharmacology. 2004, 29, 93-100.

188. Woolley, M.L.; Marsden, C.A.; Sleight, A.J.; Fone, K.C.F. Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04-6790. Psychopharmacology. 2003, 170, 358-367.

189. Lindner, M.D.; Hodges, D.B., Jr.; Hogan, J.B.; Orie, A.F.; Corsa, J.A.; Barten, D.M.; Polson, C.; Robertson, B.J.; Guss, V.L.; Gillman, K.W.; Starrett, J.E., Jr.; Gribkoff, V.K. Assessment of the effects of serotonin 6 (5-HT6) receptor antagonists in rodent models of learning. J. Pharmacol. Exp. Ther. 2003, 307, 682-691.

190. Schechter, L.E.; Dawson, L.A.; Harder, J.A. The potential utility of 5-HT1A receptor antagonists in the treatment of cognitive dysfunction associated with Alzheimer's disease. Curr. Pharm. Design. 2002, 8, 139-145.

191. Tran, P.B.; Miller, R.J. Chemokine receptors: signposts to brain development and disease. Nat. Rev. Neurosci. 2003, 4, 444-455.

192. Ragozzino, D.; Renzi, M.; Giovanneli, A.; Eusebi, F. Stimulation of chemokine CXC receptor 4 induces synaptic depression of evoked parallel fibers inputs onto Purkinje neurons in mouse cerebellum. Neuroimmunology. 2002, 127, 30-36.

193. Xia, M.; Hyman, B.T. GROa/KC, a chemokine receptor CXCR2 ligand, can be a potent trigger for neuronal ERK1/2 and PI-3 kinase pathways for tau hyperphospho-ryaltion: a role in Alzheimer's disease? J. Neuroimmunol. 2002, 122, 55-64.

194. Ueta, Y.; Ozaki, Y.; Saito, J. Novel G-protein coupled receptor ligands and neurohypophysial hormones. J. Neuroendocrinal. 2004, 16, 378-382.

195. Ellis, C. The state of GPCR research in 2004. Nat. Rev. Drug Disc. 2004, 3, 577-626.

196. Ma, P.; Zemmel, R. Value of novelty? Nat. Rev. Drug Disc. 2002, 1, 571-572.

197. Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P; Wilson, S.; Arch, J.R.; Buckingham, R.E.; Haynes, A.C.; Carr, S.A.; Annan, R.S.; McNulty, D.E.; Liu, W.S.; Terrett, J.A.; Elshourbagy, N.A.; Bergsma, D.J.; Yanagisawa, M. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998, 92, 573-585.

198. Chemelli, R.M.; Willie, J.T.; Sinton, C.M.; Elmquist, J.K.; Scammell, T.; Lee, C.; Richardson, J.A.; Williams, S.C.; Xiong, Y.; Kisanuki, Y.; Fitch, T.E.; Nakazato, M.; Hammer, R.E.; Saper, C.B.; Yanagisawa, M. Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell. 1999, 98, 437-451.

199. Lin, L.; Faraco, J.; Li, R.; Kadotani, H.; Rogers, W.; Lin, X.; Qiu, X.; de Jong, P.J.; Nishino, S.; Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell. 1999, 98, 365-376.

200. Wise, A.; Jupe, S.C.; Rees, S. The identification of ligands at orphan G-protein coupled receptors. Annu. Rev. Pharmacol. Toxicol. 2004, 44, 43-66.

201. Pickel, V.M.; Chan, J.; Kash, T.L.; Rodriguez, J.J.; MacKie, K. Compartment-specific localization of cannabinoid 1 (CB1) and mu-opioid receptors in rat nucleus accumbens. Neuroscience. 2004, 127, 101-112.

202. Borowsky, B.; Adham, N.; Jones, K.A.; Raddatz, R.; Artymyshyn, R.; Ogozalek, K.L.; Durkin, M.M.; Lakhlani, P.P.; Bonini, J.A.; Pathirana, S.; Boyle, N.; Pu, X.; Kouranova, E.; Lichtblau, H.; Ochoa, F.Y.; Branchek, T.A.; Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 8966-8971.

203. Lembo, P.M.; Grazzini, E.; Groblewski, T.; O'Donnell, D.; Roy, M.O.; Zhang, J.; Hoffert, C.; Cao, J.; Schmidt, R.; Pelletier, M.; Labarre, M.; Gosselin, M.; Fortin, Y.; Banville, D.; Shen, S.H.; Strom, P.; Payza, K.; Dray, A.; Walker, P.; Ahmad, S. Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat. Neurosci. 2002, 5, 201-209.

204. (accessed July 2004).

8 Recombinant G Protein-Coupled Receptors for Drug Discovery

Was this article helpful?

0 0
Sleeping Sanctuary

Sleeping Sanctuary

Salvation For The Sleep Deprived The Ultimate Guide To Sleeping, Napping, Resting And  Restoring Your Energy. Of the many things that we do just instinctively and do not give much  of a thought to, sleep is probably the most prominent one. Most of us sleep only because we have to. We sleep because we cannot stay awake all 24 hours in the day.

Get My Free Ebook

Post a comment