1. Hopkins, A.L. and Groom, C.R. The druggable genome. Nat. Rev. Drug Disc. 2002, 1:727-730.

2. Bockaert, J. and Pin, J.P Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 1999, 18:1723-1729.

3. Foord, S.M. Receptor classification: post genome. Curr. Opin. Pharmacol. 2002, 2:561-566.

4. Chalmers, D.T. and Behan, D.P. The use of constitutively active GPCRs in drug discovery and functional genomics. Nat. Rev. Drug Disc. 2002, 1:599- 608.

5. Vassilatis, D.K., Hohmann, J.G., Zeng, H., Li, F., Ranchalis, J.E., Mortrud, M.T., Brown, A., Rodriguez, S.S., Weller, J.R., Wright, A.C., Bergmann, J.E., Gaitanaris, G.A. The G protein-coupled receptor repertoires of human and mouse. Proc. Natl. Acad. Sci. USA 2003, 100:4903-4908.

6. Malbon, C.C. Frizzleds: new members of the superfamily of G protein-coupled receptors. Frontiers Biosci. 2004, 9:1048-1058.

7. Drews, J. Drug discovery: a historical perspective. Science 2000, 291:1960-1964.

8. Wise, A., Gearing, K., Rees, S. Target validation of G protein-coupled receptors. Drug Disc. Today 2002, 7:235-246.

9. Med Ad News Staff. World's best-selling medicines. Med Ad News 2004, 23:60-64.

10. NDC Health. The top 200 prescriptions for 2003 by number of U.S. prescriptions dispensed. RxList, 2003,

11. Schold, D. HIV co-receptors as targets for antiviral therapy. Curr. Top. Med. Chem. 2004, 4:883-893.

12. Kenakin, T. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat. Rev. Drug Disc. 2003, 2:429-438.

13. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215:403-410.

14. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25:3389-3402.

15. Gaulton, A. and Attwood, T.K. Bioinformatics approaches for the classification of G protein-coupled receptors. Curr. Opin. Pharmacol. 2003, 3:114-120.

16. Takeda, S. Kadowaki, S., Haga, T., Takaesu, H., Mitaku, S. Identification of G proteincoupled receptor genes from the human genome sequence. FEBS Lett. 2002, 520:97-101.

17. Menzaghi, F., Behan, D.P., Chalmers, D.T. Constitutively activated G protein-coupled receptors: a novel approach to CNS drug discovery. Curr. Drug Targets CNS Neurol. Dis. 2002, 1:105-121.

18. Karchin, R., Karplus, K., Haussler, D. Classifying G protein-coupled receptors with support vector machines. Bioinformatics 2002, 18:147-159.

19. Krogh, A. Brown, M., Mian, I.S., Sjolander, K., Haussler, D. Hidden Markov models in computational biology: applications to protein modeling. J. Mol. Biol. 1994, 235:1501-1531.

20. O'Rourke, M.F., Iversen, L.J., Lomasney, J.W., Bylund, D.B. Species orthologs of the alpha-2A adrenergic receptor: the pharmacological properties of the bovine and rat receptors differ from the human and porcine receptors. J. Pharmacol. Exp. Ther. 1994, 271:735-740.

21. Lovenberg, T.W., Pyati, J., Chang, H., Wilson, S.J., Erlander, M.G. Cloning of rat histamine H(3) receptor reveals distinct species pharmacological profiles. J. Pharmacol. Exp. Ther. 2000, 293:771-778.

22. Yao, B.B., Hutchins, C.W., Carr, T.L., Cassar, S., Masters, J.N., Bennani, Y.L., Esbenshade, T.A., Hancock, A.A. Molecular modeling and pharmacological analysis of species-related histamine H(3) receptor heterogeneity. Neuropharmacology 2003, 44:773-786.

23. Liu, C., Wilson, S.J., Kuei, C., Lovenberg, T.W.. Comparison of human, mouse, rat, and guinea pig histamine H4 receptors reveals substantial pharmacological species variation. J. Pharmacol. Exp. Ther. 2001, 299:121-130.

24. Schena, M., Shalon, D., Davis, R.W., Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 1995, 270:467-470.

25. Liu, C., Ma, X., Jiang, X., Wilson, S.J., Hofstra, C.L., Blevitt, J., Pyati, J., Li, X., Chai, W., Carruthers, N., Lovenberg, T.W. Cloning and pharmacological characterization of a fourth histamine receptor (H4) expressed in bone marrow. Mol. Pharmacol. 2001, 59:420-426.

Borowsky, B., Adham, N., Jones, K.A., Raddatz, R., Artymyshyn, R., Ogozalek, K.L., Durkin, M.M., Lakhlani, P.P., Bonini, J.A., Pathirana, S., Boyle, N., Pu, X., Koura-nova, E., Lichtblau, H., Ochoa, F.Y., Branchek, T.A., Gerald, C. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 2001, 98:8966-8971.

Xu, Y., Zhu, K., Hong, G., Wu, W., Baudhuin, L.M., Xiao, Y., Damron, D.S. Sphin-gosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat. Cell Biol. 2000, 5:261-267.

Hancock, A.A., Esbenshade, T.A., Krueger, K.M., Yao, B.B. Genetic and pharmacological aspects of histamine H3 receptor heterogeneity. Life Sci. 2003, 73:3043-3072. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., Shimizu, T. A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 1997, 387:620-624. Johnson, J.A. and Lima, J.J. Drug receptor/effector polymorphisms and pharmacogenetics: current status and challenges. Pharmacogenetics 2003, 13:525-534. Sadee, W. Hoeg, E., Lucas, J., Wang, D. Genetic variations in human G proteincoupled receptors: implications for drug therapy. AAPS PharmSci. 2001, 3:1-26. Seifert, R. and Wenzel-Seifert, K. Constitutive activity of G protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn-Schmiede-berg's Arch. Pharmacol. 2002, 366:381-416.

Rosenthal, W., Seibold, A., Antaramian, A., Lonergan, M., Arthus, M.F., Hendy, G.N., Birnbaumer, M., Bichet, D.G. Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 1992, 359:233-235. Barak, L.S., Oakley, R.H., Laporte, S.A., Caron, M.G. Constitutive arrestin-mediated desensitization of a human vasopression receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl. Acad. Sci. USA 2001, 98:93-98. Turki, J., Pak, J., Green, S.A., Martin, R.J., Liggett, S.B. Genetic polymorphisms of the beta 2-adrenergic receptor in nocturnal and nonnocturnal asthma: evidence that Gly16 correlates with the nocturnal phenotype. J. Clin. Invest. 1995, 95:1635-1641. Mitchell, B.D., Blangero, J., Comuzzie, A.G., Almasy, L.A., Shuldiner, A.R., Silver, K., Stern, M.P., MacCluer, J.W., Hixson, J.E. A paired sibling analysis of the b3-adrenergic receptor and obesity in Mexican Americans. J. Clin. Invest. 1998, 101:584-587.

Hirata, T., Kakizuka, A., Ushikubi, F., Fuse, I., Okuma, M., Narumiya, S. Arg 60 to Leu mutation of the human thromboxane A2 receptor in a dominantly inherited bleeding disorder. J. Clin. Invest. 1994, 94:1662-1667.

Hollopeter, G., Jantzen, H.M., Vincent, D., Li, G., England, L., Ramakrishnan, V., Yang, R.B., Nurden, P, Nurden, A., Julius, D., Conley, P.B. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001, 409:202-207. Lin, L., Faraco, J., Li, R., Kadotani, H., Rogers, W., Lin, X., Qiu, X., de Jong, PJ., Nishino, S., Mignot, E. The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 1999, 98:365-376. Karasinska, J.M., George, S.R., O'Dowd, B.F. Family 1 G protein-coupled receptor function in the CNS: insights from gene knockout mice. Brain Res. Rev. 2003, 41:125-152.

Zambrowicz, B.P and Sands, A.T. Knockouts model the 100 best-selling drugs: will they model the next 100? Nat. Rev. Drug Disc. 2003, 2:38-51.

Zambrowicz, B.P., Turner, C.A., Sands, A.T. Predicting drug efficacy: knockouts model pipeline drugs of the pharmaceutical industry. Curr. Opin. Pharmacol. 2003,


43. Van Oekelen, D., Luyten, W.H.M.L., Leysen, J.E. Ten years of antisense inhibition of brain G protein-coupled receptor function. Brain Res. Rev. 2003, 42:123-142.

44. Dorsett, Y. and Tuschl, T. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Disc. 2004, 3:318-328.

45. Jain, K.K. RNAi and siRNA in target validation. Drug Disc. Today 2004, 9:307-309.

46. Sioud, M. Therapeutic siRNAs. Trends Pharmacol. Sci. 2004, 25:22-28.

47. Martinez, M.A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B., Este, J.A. Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS 2002, 16:2385-2390.

48. Radu, C.G., Yang, L.V., Riedinger, M., Au, M., Witte, O.N. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc. Natl. Acad. Sci. USA 2004, 101:245-250.

49. Bissantz, C., Bernard, P, Hibert, M., Rognan, D. Protein-based virtual screening of chemical databases. II. Are homology models of G protein-coupled receptors suitable targets? Proteins 2003, 50:5-25.

50. Bleicher, K.H., Green, L.G., Martin, R.E., Rogers-Evans, M. Ligand identification for G-protein-coupled receptors: a lead generation perspective. Curr. Opin. Chem. Biol. 2004, 8:287-296.

51. Palczewski, K., Kumasaka, T., Hori, T., Behnke, C.A., Motoshima, H., Fox, B.A., Le Trong, I., Teller, D.C., Okada, T., Stenkamp, R.E., Yamamoto, M., Miyano, M. Crystal structure of rhodopsin: a G protein-coupled receptor. Science 2000, 289:739-745.

52. Varady, J., Wu, X., Fang, X., Min, J., Hu, Z., Levant, B., Wang, S. Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. J. Med. Chem. 2003, 46:4377-4392.

53. Evers, A. and Klebe, G. Ligand-supported homology modeling of G-protein-coupled receptor sites: models sufficient for successful virtual screening. Angew Chem. Int. Ed. Engl. 2004, 43:248-251.

54. Rohrer, S.P., Birzin, E.T., Mosley, R.T., Berk, S.C., Hutchins, S.M., Shen, D.M., Xiong, Y., Hayes, E.C., Parmar, R.M., Foor, F., Mitra, S.W., Degrado, S.J., Shu, M., Klopp, J.M., Cai, S.J., Blake, A., Chan, W.W., Pasternak, A., Yang, L., Patchett, A.A., Smith, R.G., Chapman, K.T., Schaeffer, J.M. Rapid identification of subtype-selective agonists of the somatostatin receptor through combinatorial chemistry. Science 1998, 282:737-740.

55. Hardy, L.W. and Peet, N.P. The multiple orthogonal tools approach to define molecular causation in the validation of druggable targets. Drug Disc. Today 2004, 9:117-126.

56. Evans, B.E., Rittle, K.E., Bock, M.G., DiPardo, R.M., Freidinger, R.M., Whitter, W.L., Lundell, G.F., Veber, D.F., Anderson, P.S., Chang, R.S, Lotti, V.J., Cerino, D.J., Chen, T.B., Kling, PJ., Kunkel, K.A., Springer, J.P., Hirshfield, J. Methods for drug discovery: development of potent, selective, orally effective cholecystokinin antagonists. J. Med. Chem. 1988, 31:2235-2246.

57. Klabunde, T. and Hessler, G. Drug design strategies for targeting G protein-coupled receptors. Chem. Bio. Chem. 2002, 3:928-944.

58. Bleicher, K.H., Green, L.G., Martin, R.E., Rogers-Evans, M. Ligand identification for G-protein-coupled receptors: a lead generation perspective. Curr. Opin. Chem. Biol. 2004, 8:287-296.

59. Guo, T. and Hobbs, D.W. Privileged structure-based combinatorial libraries targeting G protein-coupled receptors. Assay Drug Dev. Tech. 2003, 1:579-592.

60. Bondensgaard, K., Ankersen, M., Thogersen, H., Hansen, B.S., Wulff, B.S., Bywater, R.P. Recognition of privileged structures by G protein-coupled receptors. J. Med. Chem. 2004, 47: 888-899.

61. Morisset, S., Rouleau, A., Ligneau, X., Gbahou, F., Tardivel-Lacombe, J., Stark, H., Schunack, W., Ganellin, C.R., Schwartz, J.C., Arrang, J.M. High constitutive activity of native H3 receptors regulates histamine neurons in brain. Nature 2000, 408:860-864.

62. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 2001, 46:3-26.

63. Fernandez, D., Ghanta, A., Kauffman, G.W., Sanguinetti, M.C. Physicochemical features of the HERG channel drug binding site. J. Biol. Chem. 2004, 279:10120-10127.

64. Kamohara, M., Takasaki, J., Matsumoto, M., Saito, T., Ohishi, T., Ishii, H., Furuichi, K. Molecular cloning and characterization of another leukotriene B4 receptor. J. Biol. Chem. 2000, 275:27000-27004.

65. Civelli, O., Nothacker, H.P., Saito, Y., Wang, Z. Lin, S.H., Reinscheid, R.K. Novel neurotransmitters as natural ligands of orphan G protein-coupled receptors. Trends Neurosci. 2001, 24:230-237.

66. Meunier, J.C., Mollereau, C., Toll, L., Suaudeau, C., Moisand, C., Alvinerie, P, Butour, J., Guillemot, J.C., Ferrara, P., Monsarrat, B., Mazarguil, H., Vassart, G., Parmentier, M., Costentin, J. Isolation and structure of the endogenous agonist of opioid receptor like ORL1 receptor. Nature 1995, 377:532-535.

67. Wise, A., Jupe, S.C., Rees, S. The identification of ligands at orphan G proteincoupled receptors Annu. Rev. Pharmacol. Toxicol. 2004, 44:43-66.

68. Jones, K.A., Borowsky, B. Tamm, J.A., Craig, D.A., Durkin, M.M., Dai, M., Yao, W.J., Johnson, M., Gunwaldsen, C., Huang, L.Y., Tang, C., Shen, Q., Salon, J.A., Morse, K., Laz, T., Smith, K.E., Nagarathnam, D., Noble, S.A., Branchek, T.A., Gerald, C. GABAB receptors function as a heteromeric assembly of the subunits of GABABR1 and GABABR2. Nature 1998, 396:674-679.

69. White, J.H., Wise, A., Main, M.J., Green, A., Fraser, N.J., Disney, G.H., Barnes, A.A., Emson, P., Foord, S.M., Marshall, F.H. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 1998, 396:679-682.

70. Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P, Mosbacher, J., Bischoff, S., Kulik, A., Shigemoto, R., Karschin, A., Bettler, B. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 1998, 396:683-687.

71. Tallman, J. Dimerization of G-protein-coupled receptors: implications for drug design and signaling. Neuropsychopharmacology 2000, 23:S1-S2.

72. Milligan, G. G protein-coupled receptor dimerization: function and ligand pharmacology. Mol. Pharmacol. 2004, 66:1-7

73. George, S.R., O'Dowd, B.F., Lee, S.P G protein-coupled receptor oligomerization and its potential for drug discovery. Nat. Rev. Drug Disc. 2002, 1:808-819.

4 G Protein-Coupled Receptors as Cardiovascular Drug Targets

Was this article helpful?

0 0
Diabetes 2

Diabetes 2

Diabetes is a disease that affects the way your body uses food. Normally, your body converts sugars, starches and other foods into a form of sugar called glucose. Your body uses glucose for fuel. The cells receive the glucose through the bloodstream. They then use insulin a hormone made by the pancreas to absorb the glucose, convert it into energy, and either use it or store it for later use. Learn more...

Get My Free Ebook

Post a comment