Bibliography

[1] Santago, P. and Gage, H., Quantification of MR brain images by mixture density and partial volume modeling, IEEE Trans. Med. Imaging, Vol. 12, No. 3, pp. 566-574, 1993.

[2] Laidlaw, D. H., Fleischer, K. W., and Barr, A. H., Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 74-86, 1998.

[3] Choi, H. S., Haynor, D. R., and Kim, Y., Partial volume tissue classification of multichannel magnetic resonance images—A mixel model, IEEE Trans. Med. Imaging, Vol. 10, No. 3, pp. 395-407, 1991.

[4] Wells, W., III, Grimson, W., Kikinis, R., and Jolesz, F., Adaptive segmentation of MRI data, IEEE Trans. Med. Imaging, Vol. 15, No. 4, pp. 429-442, 1996.

[5] Held, K., Kops, E. R., Krause, B. J., Wells, W. M., III, Kikinis, R., and Müller-Gärtner, H. W., Markov random field segmentation of brain MR images, IEEE Trans. Med. Imaging, Vol. 16, No. 6, pp. 878-886, 1997.

[6] Guillemaud, R. and Brady, M., Estimating the bias field of MR Images, IEEE Trans. Med. Imaging, Vol. 16, No. 3, pp. 238-251, 1997.

[7] Kass, M., Witkin, A., and Terzopoulos, D., Snakes: Active contour models, Int. J. Comput Vision, Vol. 1, No. 4, pp. 321-331, 1988.

[8] McInerney, T. and Terzopoulos, D., Deformable models in medical image analysis: A survey, Med. Image Anal., Vol. 2, No. 1, pp. 1-36, 1996.

[9] Lotjonen, J., Reissman, P.-J., Mangin, I., and Katila, T., Model extraction from magnetic resonance volume data using the deformable pyramid, Med. Image Anal., Vol. 3, No. 4, pp. 387-406, 1999.

[10] Zeng, X., Staib, L., Schultz, R., and Duncan, J., Segmentation and measurement of the cortex from 3D MR images using coupled surfaces propagation, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 927-937, 1999.

[11] Gonzalez Ballester, M., Zisserman, A., and Brady, M., Segmentation and measurement of brain structures in MRI including confidence bounds, Med. Image Anal., Vol. 4, pp. 189-200, 2000.

[12] Xu, C., Pham, D., Rettmann, M., Yu, D., and Prince, J., Reconstruction of the human cerebral cortex from magnetic resonance images, IEEE Trans. Med. Imaging, Vol. 18, No. 6, pp. 467-480, 1999.

[13] Warfield, S., Kaus, M., Jolesz, F., and Kikinis, R., Adaptive, template moderated, spatially varying statistical classification, Med. Image Anal., Vol. 4, No. 1, pp. 43-55, 2000.

[14] Collins, D. L., Zijdenbos, A. P., Barr, W. F. C., and Evans, A. C., ANIMAL+INSECT: Improved cortical structure segmentation, In: Proceedings of the Annual Symposium on Information Processing in Medical Imaging, Kuba, A., Samal, M., and Todd-Pokropek, A., eds., Lecture Notes in Computer Science, Vol. 1613, Springer, Berlin, pp. 210-223, 1999.

[15] Liang, Z., MacFall, J. R., and Harrington, D. P., Parameter estimation and tissue segmentation from multispectral MR images, IEEE Trans. Med. Imaging, Vol. 13, No. 3, pp. 441-449, 1994.

[16] Schroeter, P., Vesin, J.-M., Langenberger, T., and Meuli, R., Robust parameter estimation of intensity distributions for brain magnetic resonance images, IEEE Trans. Med. Imaging, Vol. 17, No. 2, pp. 172-186, 1998.

[17] Wilson, D. and Noble, J., An adaptive segmentation algorithm for time-of-flight MRA data, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 938945, 1999.

[18] Dempster, A. P., Laird, N. M., and Rubin, D. B., Maximum likelihood from incomplete data via the EM algorithm, J. R. Stat. Soc., Vol. 39, pp. 1-38, 1977.

[19] Wu, Z., Chung, H.-W., and Wehrli, F., A Bayesian approach to subvoxel tissue classification in NMR microscopic images of trabecular bone, MRM, Vol. 31, pp. 302-308, 1994.

[20] Evans, A., Collins, D., Mills, S., Brown, E., Kelly, R., and Peters, T., 3D statistical neuroanatomical models from 305 MRI volumes, In: Proceeding of the IEEE Nuclear Science Symposium and Medical Imaging Conference, pp. 1813-1817, 1993.

[21] Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., and Suetens, P., Multi-modality image registration by maximization of mutual information, IEEE Trans. Med. Imaging, Vol. 16, No. 2, pp. 187-198, 1997.

[22] Maes, F., Vandermeulen, D., and Suetens, P., Medical image registration using mutual information, Proc. IEEE, Vol. 91, No. 10, pp. 1699-1722, 2003.

[23] Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., Automated model-based bias field correction of MR images of the brain, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 885-896, 1999.

[24] D'Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P., A viscous fluid model for multimodal non-rigid image registration using mutual information, Med. Image Anal., Vol. 7, No. 4, pp. 565-575, 2003.

[25] Simmons, A., Tofts, P., Barker, G., and Arridge, S., Sources of intensity nonuniformity in spin echo images at 1.5 T, Magn. Reson. Med., Vol. 32, pp. 121-128, 1994.

[26] Sled, J. G. and Pike, G. B., Understanding Intensity Non-Uniformity in MRI, In: Proceedings of Medical Image Computing and ComputerAssisted Intervention, MICCAI'98, Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, pp. 614-622, 1998.

[27] Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., A unifying framework for partial volume segmentation of brain MR images, IEEE Trans. Med. Imaging, Vol. 22, No. 1, pp. 105-119, 2003.

[28] Tincher, M., Meyer, C., Gupta, R., and Williams, D., Polynomial modeling and reduction of RF body coil spatial inhomogeneity in MRI, IEEE Trans. Med. Imaging, Vol. 12, No. 2, pp. 361-365, 1993.

[29] Moyher, S. E., Vigneron, D. B., and Nelson, S. J., Surface coil MR imaging of the human brain with an analytic reception profile correction, J. Magn. Reson. Imaging, Vol. 5, No. 2, pp. 139-144, 1995.

[30] Gonzalez Ballester, M. A., Morphometric Analysis of Brain Structures in MRI, Ph.D. Thesis, Department of Engineering Science, University of Oxford, 1999.

[31] Dawant, B. M., Zijdenbos, A. P., and Margolin, R., Correction of intensity variations in MR images for computer-aided tissue classification, IEEE Trans. Med. Imaging, Vol. 12, No. 4, pp. 770-781, 1993.

[32] Meyer, C., Bland, P., and Pipe, J., Retrospective correction of MRI amplitude inhomogeneities, In: Proceedings of the First International Conference on Computer Vision, Virtual Reality, and Robotics in Medicine, CVRMED'95, Ayache, N., ed., Lecture Notes in Computer Science, Vol. 905, Springer, Nice, France, pp. 513-522, 1995.

[33] Brechbuhler, C., Gerig, G., and Szekely, G., Compensation of spatial inhomogeneity in MRI based on a parametric bias estimate, In: Proceedings of Visualization in Biomedical Computing, VBC'96, Lecture Notes in Computer Science, Vol. 1131, Springer, Berlin, pp. 141-146, 1996.

[34] Sled, J. G., Zijdenbos, A. P., and Evans, A. C., A comparison of retrospective intensity non-uniformity correction methods for MRI, In: Proceedings of XVth International Conference on Information Processing in Medical Imaging, IPMI'97, Lecture Notes in Computer Science, Vol. 1230, Springer, Berlin, pp. 459-464, 1997.

[35] Styner, M., Brechbuhler, C., Szekely, G., and Gerig, G., Parametric estimate of intensity inhomogeneities applied to MRI, IEEE Trans. Med. Imaging, Vol. 19, No. 3, pp. 153-165, 2000.

[36] Sled, J. G., Zijdenbos, A. P., and Evans, A. C., A Nonparametric method for automatic correction of intensity nonuniformity in MRI Data, IEEE Trans. Med. Imaging, Vol. 17, No. 1, pp. 87-97, 1998.

[37] Mangin, J.-F., Entropy minimization for automatic correction of intensity nonuniformity, In: Proceedings of IEEE Workshop on Mathematical

Methods in Biomedical Image Analysis, MMBIA'00, pp. 162-169, 2000.

[38] Likar, B., Viergever, M., and Pernus, F., Retrospective correction of MR intensity inhomogeneity by information minimization, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI 2000, Lecture Notes in Computer Science, Vol. 1935, Springer, Berlin, pp. 375-384, 2000.

[39] Van Leemput, K., Maes, F., Vandermeulen, D., and Suetens, P., Automated model-based tissue classification of MR images ofthe brain, IEEE Trans. Med. Imaging, Vol. 18, No. 10, pp. 897-908, 1999.

[40] Li, S., Markov Random Field Modeling in Computer Vision, Computer Science Workbench Series, Springer, Berlin, 1995.

[41] Ising, E., Beitrag zur theorie des ferromagnetismus, Zeitschrift für Physik, Vol. 31, pp. 253-258, 1925.

[42] Descombes, X., Mangin, J.-F., Pechersky, E., and Sigelle, M., Fine structure preserving markov model for image processing, In: Proceedings of the 9th Scandinavian Conference on Image Analysis, SCIA'95, pp. 349-356, 1995.

[43] Zhang, J., The mean-field theory in EM procedures for Markov random fields, IEEE Trans. Signal Process., Vol. 40, No. 10, pp. 2570-2583,1992.

[44] Langan, D. A., Molnar, K. J., Modestino, J. W., and Zhang, J., Use of the mean-field approximation in an EM-based approach to unsuper-vised stochastic model-based image segmentation, In: Proceedings of ICASSP'92, San Fransisco, CA, March 1992, Vol. 3, pp. 57-60.

[45] Kwan, R. K.-S., Evans, A. C., and Pike, G. B., MRI simulation-based evaluation of image-processing and classification methods, IEEE Trans. Med. Imaging, Vol. 18, No. 11, pp. 1085-1097, 1999. Available at http://www.bic.mni.mcgill.ca/brainweb/.

[46] Dice, L. R., Measures of the amount of ecologic association between species, Ecology, Vol. 26, No. 3, pp. 297-302, 1945.

[47] Zijdenbos, A. P., Dawant, B. M., and Margolin, R. A., Intensity correction and its effect on measurement variability in the computer-aided analysis of MRI, In: Proceedings of 9th International Symposium and Exhibition on Computer Assisted Radiology, CAR'95, Springer, Berlin, pp. 216-221, June 1995.

[48] Park, J., Gerig, G., Chakos, M., Vandermeulen, D., and Lieberman, J., Neuroimaging of psychiatry disease: Reliable and efficient automatic brain tissue segmentation for increased sensitivity, Schizophrenia Res., Vol. 49, p. 163, 1994.

[49] Rajapakse, J. and Krugge, F., Segmentation of MR images with intensity inhomogeneities, Image Vision Comput., Vol. 16, pp. 165-180, 1998.

[50] Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., and Fernandez-Bouzas, A., An accurate and efficient Bayesian method for automatic segmentation of brain MRI, IEEE Trans. Med. Imaging, Vol. 21, No. 8, pp. 934-945, 2002.

[51] Niessen, W., Vincken, K., Weickert, J., ter Haar Romeny, B., and Viergever, M., Multiscale segmentation of three-dimensional MR brain images, Int. J. Comput. Vision, Vol. 31, No. 2/3, pp. 185-202, 1999.

[52] Van Leemput, K., Maes, F., Vandermeulen, D., Colchester, A., and Suetens, P., Automated segmentation of multiple sclerosis lesions by model outlier detection, IEEE Trans. Med. Imaging, Vol. 20, No. 8, pp. 677-688, 2001.

[53] Huber, P., Robust Statistics, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1981.

[54] Zhuang, X., Huang, Y., Palaniappan, K., and Zhao, Y., Gaussian mixture density modeling, decomposition, and applications, IEEE Trans. Image Process., Vol. 5, No. 9, pp. 1293-1302, 1996.

[55] Chung, A. and Noble, J., Statistical 3D vessel segmentation using a rician distribution, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI'99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 82-89, 1999.

[56] Hoaglin, D., Mosteller, F., and Tukey, J., eds., Understanding Robust and Explanatory Data Analysis, Wiley series in Probability and Mathematical Statistics, Wiley, New York, 1983.

[57] European project on Brain Morphometry, BIOMORPH, EU-BIOMED2 Project No. BMH4-CT96-0845, 1996-1998.

[58] Udupa, J., Wei, L., Samarasekera, S., Miki, Y., van Buchem, M., and Grossman, R., Multiple sclerosis lesion quantification using fuzzy-connectedness principles, IEEE Trans. Med. Imaging, Vol. 16, No. 5, pp. 598-609, 1997.

[59] Johnston, B., Atkins, M., Mackiewich, B., and Anderson, M., Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI, IEEE Trans. Med. Imaging, Vol. 15, No. 2, pp. 154-169, 1996.

[60] Zijdenbos, A., Dawant, B. M., Margolin, R. A., and Palmer, A. C., Mor-phometric analysis of white matter lesions in MR images: Method and validation, IEEE Trans. Med. Imaging, Vol. 13, No. 4, pp. 716-724, 1994.

[61] Kamber, M., Shinghal, R., Collins, D., Francis, G., and Evans, A., Modelbased 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images, IEEE Trans. Med. Imaging, Vol. 14, No. 3, pp. 442-453, 1995.

[62] Kikinis, R., Guttmann, C., Metcalf, D., Wells, W., III, Ettinger, G., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Technical aspects, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 519-530, 1999.

[63] Warfield, S., Dengler, J., Zaers, J., Guttmann, C., Wells, W., III, Ettinger, G., Hiller, J., and Kikinis, R., Automatic identification of grey matter structures from MRI to improve the segmentation of white matter lesions, J. Image Guided Surg., Vol. 1, No. 6, pp. 326-338, 1995.

[64] Zijdenbos, A., Evans, A., Riahi, F., Sled, J., Chui, J., and Kollokian, V., Automatic quantification of multiple sclerosis lesion volume using stereotaxic space, In: Proceedings of Visualization in Biomedical Computing, VBC'96, Lecture Notes in Computer Science, Springer, Berlin, Vol. 1131, pp. 439-448, 1996.

[65] Zijdenbos, A., Forghani, R., and Evans, A., Automatic quantification of MS lesions in 3D MRI brain data sets: Validation of INSECT, In: Proceedings of Medical Image Computing and Computer-Assisted Intervention, MICCAI'98, Lecture Notes in Computer Science, Vol. 1496, Springer, Berlin, pp. 439-448, 1998.

[66] Guttmann, C., Kikinis, R., Anderson, M., Jakab, M., Warfield, S., Killiany, R., Weiner, H., and Jolesz, F., Quantitative follow-up of patients with multiple sclerosis using MRI: Reproducibility, J. Magn. Reson. Imaging, Vol. 9, No. 4, pp. 509-518, 1999.

[67] Evans, A., Frank, J., Antel, J., and Miller, D., The role of MRI in clinical trials of multiple sclerosis: Comparison of image processing techniques, Ann. Neurol., Vol. 41, No. 1, pp. 125-132, 1997.

[68] Filippi, M., Horsfield, M., Tofts, P., Barkhof, F., Thompson, A., and Miller, D., Quantitative assessment of MRI lesion load in monitoring the evolution of multiple sclerosis, Brain, Vol. 118, pp. 1601-1612, 1995.

[69] Antel, S. B., Bernasconi, A., Bernasconi, N., Collins, D. L., Kearney, R. E., Shinghal, R., and Arnold, D. L., Computational models of MRI characteristics of focal cortical dyaplasia improve lesion detection, NeuroImage, Vol. 17, No. 4, pp. 1755-1760, 2002.

[70] Antel, S. B., Collins, D. L., Bernasconi, N., Andermann, F., Shinghal, R., Kearney, R. E., Arnold, D. L., and Bernasconi, A., Automated detection of focal cortical dysplasia lesions using computational models of their MRI characteristics and texture analysis, NeuroImage, Vol. 19, No. 4, pp. 1784-1759, 2003.

[71] Ashburner, J., Friston, K., Holmes, A., and Poline, J.-B., Statistical Parametric Mapping, The Wellcome Department of Cognitive Neurology, University College London, London. Available at http://www.fil.ion.ucl.ac.uk/spm/.

[72] Srivastava, S., Vandermeulen, D., Maes, F., Dupont, P., van Paesschen, W., and Suetens, P., An automated 3D algorithm for neo-cortical thickness measurement, In: Proceedings of Medical Image Computing and

Computer-Assisted Intervention, MICCAI'03, Lecture Notes in Computer Science, Springer, Berlin, Vol. 2879, pp. 488-495.

[73] DeLisi, L., Tew, W., Shu-Hong, X., Hoff, A. L., Sakuma, M., Kushner, M., Lee, G., Shedlack, K., Smith, A. M., and Grimson, R., A prospective follow-up study of brain morphology and cognition in first-epsiode schizophrenic patients: Preliminary findings, Biol. Psychiatry, Vol. 38, No. 2, pp. 349-360, 1995.

[74] Crow, T., Ball, J., Bloom, S., Brown, R., Bruton, C. J., Colter, N., Firth, C. D., Johnstone, E. C., Owens, D. E., and Roberts, G. W., Schizophrenia as an anomaly of development of cerebral asymmetry, Arch. Gen. Psychiatry, Vol. 46, pp. 1145-1150, 1989.

[75] Maes, F., Van Leemput, K., DeLisi, L. E., Vandermeulen, D., and Suetens, P., Quantification of cerebral grey and white matter asymmetry from MRI, In: Proceedings of Medical Image Computing and ComputerAssisted Intervention, MICCAI'99, Lecture Notes in Computer Science, Vol. 1679, Springer, Berlin, pp. 348-357, 1999.

[76] Marais, P., Guillemaud, R., Sakuma, M., Zisserman, A., and Brady, M., Visualising cerebral asymmetry, In: Visualization in Biomedical Computing, Vol. 1131 of Lecture Notes in Computer Science, Hohne, K. H. and Kikinis, R. eds., Homburg, Germany, Springer, pp. 411-416, 1999.

[77] Liu, Y., Collins, R. T., Rothfus, W. E., Automatic Bilateral symmetry (midsagittal) plane extraction from pathological 3D neuroradiologi-cal images, In: Medical Imaging 1998: Image Processing, Vol. 3338 of Proc. SPIE, Hanson, K. M. ed., San Diego, CA, USA, pp. 1528-1539, 1998.

[78] Prima, S., Thirion, J.-P., Subsol, G., and Roberts, N., Automatic analysis of normal brain dissymmetry of males and females in MR images, In: Medical Image Computing and Computer-Assisted Intervention (MICCAI'98), Vol. 1496 of Lecture Notes in Computer Science, Wells, W. M., Colchester, A., and Delp, S., eds., Cambridge, MA, USA, Springer, pp. 770-779, 1998.

[79] Ashburner, J. and Friston, K., Voxel-based morphometry—The methods, Neurolmage, Vol. 11, No. 6, pp. 805-821, 2000.

[80] Pohl, K. M., Wells, W. M., III, Guimond, A., Kasai, K., Shenton, M. E., Kikinis, R., Grimson, W. E. L., and Warfield, S. K., Incorporating nonrigid registration into expectation maximization algorithm to segment MR images, In: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, Part I, Springer-Verlag, Berlin, pp. 564-571, 2002.

[81] Wyatt, P. P. and Noble, J. A., MAP MRF joint segmentation and registration of medical images, Med. Image Anal., Vol. 7, No. 4, pp. 539-552, 2003.

[82] D'Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P., An information theoretic approach for non-rigid image registration using voxel class probabilities, In: Proceedings of the Second International Workshop on Biomedical Image Registration, WBIR 2003, Lecture Notes in Computer Science, Vol. 2717, pp. 122-131, Springer, 2003.

[83] Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A., and Evans, A., Enhancement of MR images using registration for signal averaging, J. Comput Tomography, Vol. 22, 1998.

[84] Kochunov, P., Lancaster, J., Thompson, P., Toga, A., Brewer, P., Hardies, J., and Fox, P., An optimized individual target brain in the Talairach coordinate system, NeuroImage, Vol. 17, 2002.

[85] Vandermeulen, D., Descombes, X., Suetens, P., and Marchal, G., Un-supervised regularized classification of multi-spectral MRI, Technical Report KUL/ESAT/MI2/9608, Katholieke Universiteit Leuven, Feb. 1996.

0 0

Post a comment