References

1. Pollack, I. F. (1994). Current Concepts: Brain tumors in children. N Engl J Med 331, 1500-1507.

2. DeAngelis, L. M. (2001). Brain tumors. N Engl J Med 344, 114-123.

3. Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.

4. Kapoor, G. S., and O'Rourke, D. M. (2003). Mitogenic signaling cascades in glial tumors. Neurosurgery 52, 1425-1435.

5. Yount, G. L., Levine, K. S., Kuriyama, H., Haas-Kogan, D. A., and Israel, M. A. (1999). Fas (APO-1/CD95) signaling pathway is intact in radioresistant human glioma cells. Cancer Res 59, 1362-1365.

6. Lowe, S., Bodis, S., McClatchy, A. et al. (1994). Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science 266, 807-810.

7. Pollack, I. F., Finkelstein, S. D., Burnham, J. et al. (2001). Age and TP53 mutation frequency in childhood gliomas. Results in a multi-institutional cohort. Cancer Res 61, 7404-7407.

8. Sidransky, D., Mikkelsen, T., Schechheimer, K., Rosenblum, M. L., Cavenee, W., and Vogelstein, B. (1992). Clonal expansion of p53 mutant cells is associated with brain tumor progression. Nature 355, 846-847.

9. Kinzler, K. W., and Vogelstein, B. (1994). Cancer therapy meets p53. N Engl J Med 331, 49-50.

10. Goh, H. -S., Yao, J., and Smith, D. R. (1995). p53 point mutation and survival in colorectal cancer patients. Cancer Res 55, 5217-5221.

11. Pollack, I. F., Finkelstein, S. D., Woods, J. et al. (2002). Expression of p53 and prognosis in malignant gliomas in children. N Engl J Med 346, 420-427.

12. Li, J., Yen, C., Liaw, D. et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943-1947.

13. Davies, M. A., Lu, Y., Sano, T. et al. (1998). Adenoviral transgene expression of MMAC/PTEN in human glioma cells inhibits Akt activation and induces anoikis. Cancer Res 58, 5285-5290.

14. Cantley, L. C., and Neel, B. G. (1999). New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. Proc Natl Acad Sci USA 96, 4240-4245.

15. Nister, M., Libermann, T. A., Betscholz, C. et al. (1988). Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor a^and their receptors in human malignant glioma cell lines. Cancer Res 48, 3910-3918.

16. Waterfield, M. D., Scrace, G. T., Whittle, N. et al. (1989). Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304, 35-39.

17. Nister, M., Claesson-Welch, L., Erikssonm, A., Heldin, C.-H., and Westermark, B. (1991). Differential expression of platelet-derived growth factor receptors in human malignant glioma cell lines. J Biol Chem 266, 16755-16763.

18. Lokker, N. A., Sullivan, C. M., Hollenbach, S. J., Israel, M. A., and Giese, N. A. (2002). Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: Evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62, 3729-3735.

19. Bergsten, E., Uutela, M., Li, X. et al. (2001). PDGF-D is a specific, protease-activated ligand for the PDGF beta receptor. Nat Cell Biol 3, 512-516.

20. Gilbertson, D. G., Duff, M. E., West, J. W. et al. (2001). Platelet-derived growth factor C (PDGF-C), a novel growth factor that binds to PDGF alpha and beta receptor. J Biol Chem 276, 27406-27414.

21. Harsh, G. R., Keating, M. T., and Escobedo, J. A. (1990). Williams LT. Platelet-derived growth factor (PDGF) autocrine components in human tumor cell lines. J Neuro-Oncol 8, 1-12.

22. Maxwell, M., Naber, S. P., Wolfe, H. J., Galanopoulos, T., Hedley-Whyte, E. T., and Black, P. M. (1990). Antoniades HN. Coexpression of platelet-derived growth factor (PDGF) and PDGF-receptor genes by primary human astrocytomas may contribute to their development and maintenance. J Clin Invest 86, 131-140.

23. Mauro, A., Bulfone, A., Turco, E., and Schiffer, D. (1991). Co-expression of platelet-derived growth factor (PDGF) B chain and PDGF B-type receptor in human gliomas. Child's Nerv Syst 7, 432-436.

24. Hermanson, M., Funa, K., Hartman, M. et al. (1992). Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52, 3213-3219.

25. Hermanson, M., Funa, K., Koopman, J. et al. (1996). Association of loss of heterozygosity on chromosome 17p with high platelet-derived growth factor alpha receptor expression in human malignant gliomas. Cancer Res 56, 164-171.

26. Fleming, T. P., Saxena, A., Clark, W. C. et al. (1992). Amplification and/or overexpression of platelet-derived growth factor receptors in human glial tumors. Cancer Res 52, 4550-4553.

27. Dai, C., Celestino, J. C., Okada, Y., Louis, D. N., Fullerm, G. N., and Holland, E. C. (2001). PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendro-gliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Genes Dev 15, 1913-1925.

28. Black, P., Carroll, R., and Glowacka, D. (1996). Expression of platelet-derived growth factor transcripts in medullo-blastomas and ependymomas. Pediatr Neurosurg 24, 74-78.

29. MacDonald, T. J., Brown, K. M., LaFleur, B. et al. (2001). Expression profiling of medulloblastoma: PDGFRA and the RAS/MAPK pathway as therapeutic targets for metastatic disease. Nature Genet 29, 143-52.

30. Vassbotn, F. S., Ostman, A., Langeland, N. et al. (1994). Activated platelet-derived growth factor autocrine pathway drives the transformed phenotype of a human glioblastoma cell line. J Cell Physiol 158, 381-389.

31. Guha, A., Dashner, K., Black, P. M., Wagner, J. A., and Stiles, C. D. (1995). Expression of PDGF and PDGF receptors in human astrocytoma operation specimens supports the existence of an autocrine loop. Int J Cancer 60, 168-173.

32. Pollack, I. F., Randall, M. S., Kristofik, M. P., Kelly, R. H., Selker, R. G., and Vertosick, F. T., Jr. (1990). Response of malignant glioma cell lines to epidermal growth factor and platelet-derived growth factor in a serum-free medium. J Neurosurg 73, 106-112.

33. Pollack, I. F., Randall, M. S., Kristofik, M. P., Kelly, R. H., Selker, R. G., and Vertosick, F. T., Jr. (1991). Response of low-passage human malignant gliomas in vitro to stimulation and selective inhibition of growth factor-mediated pathways. J Neurosurg 75, 284-293.

34. Westphal, M., Brunken, M., Rohde, E., and Herrmann, H.-D. (1988). Growth factors in cultured human glioma cells: differential effects of FGF, EGF, and PDGF. Canc Lett 38, 283-296.

35. Campbell, J., and Pollack, I. F. (1997). Growth factors in gliomas: Antisense and dominant negative mutant strategies. J Neuro-oncol 35, 275-285.

36. Kovalenko, M., Gazit, A., Böhmer, A. et al. Selective platelet-derived growth factor receptor kinase blockers reverse sis-transformation. Cancer Res 54, 6106-6114.

37. Nitta, T., and Sato, K. (1994). Specific inhibition of c-sis protein synthesis and cell proliferation with antisense oligodeoxynucleotides in human glioma cells. Neurosurgery 34, 309-314.

38. Wang, D., Huang, H. J., Kazlauskas, A., and Cavenee, W. K. (1999). Induction of vascular endothelial growth factor expression in endothelial cells by platelet-derived growth factor through the activation of phosphatidylinositol 3-kinase. Cancer Res 59, 1464-1472.

39. Carmeliet, P., and Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249-257.

40. Schlessinger, J. (2000). Cell signaling by receptor tyrosine kinases. Cell 103, 211-225.

41. Shelly, M., Pinkas-Kramarski, R., Guarino, B. C. et al. (1998). Epiregulin is a potent pan-ErbB ligand that preferentially activates heterodimeric receptor complexes. J Biol Chem 273, 10496-10505.

42. Tzahar, E., Waterman, H., Chen, X. et al. (1996). A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol Cell Biol 16, 5276-5287.

43. Libermann, T. A., Nusbaum, H. R., Razon, N. et al. (1985). Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumors of glial origin. Nature 313, 44-147.

44. von Deimling, A., Louis, D. N., von Ammon, K. et al. (1993b). Association of epidermal growth factor receptor gene amplification with loss of chromosome 10 in human glioblastoma multiforme. J Neurosurg 77, 95-301.

45. Ekstrand, A. H., James, C. D., Cavenee, W. K., Seliger, B., Petterson, R. F., and Collins, V. P. (1991). Genes for epidermal growth factor receptor, transforming growth factor a, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51, 2164-2172.

46. Ullrich, A., and Schlessinger, J. (1990). Signal transduction by receptor with tyrosine kinase activity. Cell 61, 203-212.

47. Wong, A. J., Ruppert, J. M., Bigner, S. H. et al. (1992). Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89, 2965-2969.

48. Schwechheimer, K., Huang, S., and Cavenee, W. K. (1995). EGFR gene amplification-rearrangement in human glio-blastomas. Int J Cancer 62, 145-148.

49. Frederick, L., Wang, X.-Y., Eley, G., and James, C. D. (2000). Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60, 1383-1387.

50. Moscatello, D. K., Holgado-Madruga, M., Emlet, D. R. et al. (1998). Constitutive activation of phosphatidyl 3-kinase by a naturally occurring mutant epidermal growth factor receptor. J Biol Chem 273, 200-206.

51. Chu, C. T., Everiss, K. D., Wikstrand, C. J. et ah (1997). Receptor dimerization is not a factor in the signaling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 324, 855-861.

52. Louis, D. N. (1997). A molecular genetic model of astrocytoma histopathology. Brain Pathol 7, 755-764.

53. Watanabe, K., Tachibana, O., Sato, K., Yonekawa, Y., Kleihues, P., and Ohgaki, H. (1996). Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6, 217-224.

54. von Deimling, A., von Ammon, K., Schoenfeld, D., Wiestler, O. D., Seizinger, B. R., and Louis, D. N. (1993a). Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3, 19-26.

55. Bredel, M., Pollack, I. F., Hamilton, R. L., and James, C. D. (1999). Epidermal growth factor receptor (EGFR) expression in high-grade non-brainstem gliomas of childhood. Clin Cancer Res 5, 1786-1792.

56. Holland, E. C., Hively, W. P., DePinho, R. A., and Varmus, H. E. (1998). A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12, 3675-3685.

57. Gilbertson, R. J., Perry, R. H., Kelly, P. J., Pearson, A. D., and Lunec, J. (1997). Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res 57, 3272-3280.

58. Gilbertson, R. J., Clifford, S. C., Meekin, W. et al. (1998). Expression of the ErbB-neuregulin signaling network during human cerebellar development: Implications for the biology of medulloblastoma. Cancer Res 58, 3932-3941.

59. Gilbertson, R., Wickramasinghe, C., Hernan, R. et al. (2001). Clinical and molecular stratification of disease risk in medullo-blastoma. Br J Cancer 85, 705-712.

60. Gilbertson, R. J., Bentley, L., Hernan, R. et al. (2002). ErbB signaling promotes ependymoma cell proliferation and represents a potential novel therapeutic target for this disease. Clin Cancer Res 8, 3054-3064.

61. O'Rourke, D. M., Qian, X., Zhang, H. T. et al. (1997). Trans receptor inhibition of human glioblastoma cells by erbB family ectodomains. Proc Natl Acad Sci USA 94, 3250-3255.

62. Mishima, K., Johns, T. G., Luwor, R. B. et al. (2001). Growth suppression of intracranial xenografted glioblastomas over-expressing mutant epidermal growth factor receptors by systemic administration of monoclonal antibody (mAb) 806, a novel monoclonal antibody directed to the receptor. Cancer Res 61, 5349-5354.

63. Luwor, R. B., Johns, T. G., Murone, C. et al. (2001). Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 61, 5355-5361.

64. Hernan, R., Fasheh, R., Calabrese, C. et al. (2003). ErbB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res 63, 140-148.

65. Weiner, H. L. (1995). The role of growth factor receptors in central nervous system development and neoplasia. Neurosurgery 37, 179-194.

66. McCormick, F. (1993). How receptors turn Ras on. Nature 363, 15-16.

67. Pawson, T. (1995). Protein modules and signalling networks. Nature 373, 573-580.

68. Boguski , M. S., and McCormick, F. (1993). Proteins regulating Ras and its relatives. Nature 366, 643-654.

69. Li, N., Batzer, A., Daly, R. et al. (1993). Guanine-nucleotide-releasing factor hSosl binds to Grb2 and links receptor tyrosine kinases to Ras signaling. Nature 363, 85-88.

70. Rozakis-Adcock, M., Fernley, R., Wade, J., Pawson, T., and Bowtell, D. (1993). The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSosl. Nature 363, 83-85.

71. Peddanna, N., Mendis, R., Holt, S., and Verma, R. S. (1996). Genetics of colorectal cancer. Int J Oncol 9, 327-335.

72. Bos, J. L. (1989). Ras oncogenes in human cancer: A review. Cancer Res 49, 4682-4689.

73. Guha, A., Feldkamp, M. M., Lau, N., Boss, G., and Pawson, A. (1997). Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15, 2755-2765.

74. Orian, J. M., Vasilopoulos, K., Yoshida, S., Kaye, A. H., Chow, C. W., and Gonzales, M. F. (1992). Overexpression of multiple oncogenes related to histopathological grade of astrocytic glioma. Br J Cancer 66, 106-112.

75. Riccardi, A., Danova, M., Giordano, M. et al. (1991). Proto-oncogene expression and proliferative activity in human malignant gliomas. Dev Oncol 66, 81-84.

76. Prigent, S. A., Nagane, M., Lin, H. et al. (1996). Enhanced tumorigenic behavior of glioblastoma cells expressing a truncated epidermal growth factor receptor is mediated through the Ras-SHC-GRB2 pathway. J Biol Chem 271, 25639-25645.

77. Rodrigues, G. A., Falasca, M., Zhang, Z., Ong, S.H., and Schlessinger, J. (2000). A novel positive feedback loop mediated by the docking protein Gab1 and phosphotidylinositol 3-kinase in epidermal growth factor receptor signaling. Molec Cell Biol 20, 1448-1459.

78. Marais, R., Light, Y., Mason, C., Paterson, H., Olson, M. F., and Marshall, C. J. (1998). Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280, 109-112.

79. Meisenhelder, J., Suh, P.-G., Rhee, S.-G., and Hunter, T. (1989). Phospholipase C-y^is a substitute for the PDGR and EGF receptor protein-tyrosine kinases in vivo and in vitro. Cell 57, 1109-1122.

80. Kauffmann-Zeh, A., Thomas, G. M. H., Ball, A. et al. (1995). Requirement for phosphatidylinositol transfer protein in epidermal growth factor signaling. Science 368, 1188-1190.

81. Luttrell, L. M., Daaka, Y., and Lefkowitz, R. J. (1999). Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11, 177-183.

82. Dikic, I., Tokiwa, G., Lev, S., Courtneidge, S. A., and Schlessinger, J. (1996). A role of Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 383, 547-550.

83. Bromberg, J., and Chen, X. (2001). STAT proteins: Signal transducers and activators of transcription. Methods Enzymol 333, 138-151.

84. Heldin, C. H., Ostman, A., and Ronnstrand, L (1998). Signal transduction via platelet-derived growth factor receptors. Biochim Biophys Acta 1378, F79-F113.

85. Valgeirsdottir, S., Paukku, K., Silvennoinen, O., Heldin, C. H., and Claesson-Welsh, L. (1998). Activation of Stat5 by platelet-derived growth factor (PDGF) is dependent on phosphoryla-tion sites in PDGF-beta receptor juxtamembrane and kinase insert domains. Oncogene 16, 505-515.

86. Quadros, M. R. D., Peruzzi, F., Kar, C., and Rodeck, U. (2004). Complex regulation of signal transducers and activators of transcription 3 activation in normal and malignant keratino-cytes. Cancer Res 64, 3934-3939

87. Zhong, Z., Wen, Z., and Darnell, J. E., Jr. (1994). Stats: A STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264, 95-98.

88. Shual, K., Ziemiecki, A., Wilks, A. F. et al. (1993). Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366, 580-585.

89. Luo, Z., Tzivion, G., Belshaw, P. J., Vavvas, D., Marshall, M., and Avruch, J. (1996). Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383, 181-185.

90. Freed, E., Symons, M., MacDonald, S. G., McCormick, F., and Ruggieri, R. (1994). Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science 265, 1713-1716.

91. Howe, L. R., Leevers, S. J., Gomez, N., Nakielny, S., Cohen, P., and Marshall, C. J. (1992). Activation of the MAP kinase pathway by the protein kinase raf. Cell 71, 335-342.

92. Kyriakis, J. M., Force, T. L., Rapp, U. R., Bonventre, J. V., and Avruch, J. (1993). Mitogen regulation of c-raf-1 protein kinase activity toward mitogen-activated protein kinase-kinase. J Biol Chem 268, 16009-16019.

93. Derijard, B., Raingeaud, J., Barrett, T., Wu, I.-H., Han, J., Ulevitch, R. J., and Davis, R. J. (1995). Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 367, 682-684.

94. Blenis, J. (1993). Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90, 5889-5892.

95. Gille, H., Kortenjahn, M., Thomae, O. et al. (1995). ERK phosphorylation potentiates Elk-1-mediated ternary complex formation and transactivation. EMBO J 14, 951-962.

96. Marais, R., Wynne, J., and Treisman, R. (1993). The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell 73, 381-393.

97. Lin, A., Minden, A., Martinetto, H. et al. (1995). Identification of a dual specificity kinase that activates the Jun kinases and p38-Mpk2. Science 268, 286-290.

98. Behrens, A., Jochum, W., Sibilia, M., and Wagner, E. F. (2000). Oncogenic transformation by ras and fos is mediated by c-Jun N-terminal phosphorylation. Oncogene 19, 2657-2663.

99. Wu, C. J., Qian, X., and O'Rourke, D. M. (1999). Sustained mitogen-activated protein kinase activation is induced by transforming erbB receptor complexes. DNA Cell Biol 18, 731-741.

100. Tsuiki, H., Tnani, M., Okamoto, I. et al. (2003). Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Research 63, 250-255.

101. Ludwig, S., Engel, K., Hoffmeyer, A. et al. (1996). 3pK, a novel mitogen-activated protein (MAP) kinase-activated protein kinase, is targeted by three MAP kinase pathways. Molec Cell Biol 16, 6687-6697.

102. Waskiewicz, A. J., Flynn, A., Proud, C. G., and Cooper, J. A. (1997). Mitogen-activated protein kinases activate the serine/ threonine kinases Mnk1 and Mnk2. Embo J 16, 1909-1920.

103. Ashkenazi, A., and Dixit, V. M. (1998). Death receptors: signaling and modulation. Science 281, 1305-1308.

104. Wu, J., Dent, P., Jelinek, T., Wolfman, A., Weber, M. J., and Sturgill, T. W. (1993). Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science 262, 1065-1069.

105. Cardone, M. H., Roy, N., Stennicke, H. R. et al. (1998). Regulation of cell death protease caspase-9 by phosphoryla-tion. Science 282, 1318-1321.

106. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.

107. Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789.

108. Li, D. M., and Sun, H. (1998). PTEN/MMAC1/TEP1 suppressed the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. Proc Natl Acad Sci USA 95, 15406-15411.

109. Pershouse, M. A., Stubblefield, E., Hadi, A., Killary, A. M., Yung, W. K., and Steck, P. A. (1993). Analysis of the functional role of chromosome 10 loss in human glioblastomas. Cancer Res 53, 5043-5050.

110. Nishizuka, Y. (1988). The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 334, 661-665.

111. Nishizuka, Y. (1992). Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607-613.

112. Susa, M., Olivier, A. R., Fabbro, D., and Thomas, G. (1989). EGF induces biphasic S6 kinase activation: late phase is protein kinase C-dependent and contributes to mitogenicity. Cell 57, 817-824.

113. Fields, A. P., Tyler, G., Kraft, A. S., and May, W. S. (1990). Role of nuclear protein kinase C in the mitogenic response to platelet-derived growth factor. J Cell Science 96, 107-114.

114. Pollack, I. F., Bredel, M., and Erff, M. (1998). The application of signal transduction inhibition as a therapeutic strategy for central nervous system tumors. Pediatr Neurosurg 29, 228-244.

115. Basu, A., and Lazo, J. S. (1994). Protein kinase C In: New Molecular Targets for Cancer Chemotherapy. Kerr, D. J., and Workman, P. (eds), CRC Press, 121-141.

116. Kolch, W., Heldecker, G., Kochs, G. et al. (1993). Protein kinase CaVactivates Raf-1 by direct phosphorylation. Nature 364, 249-252.

117. Chao, T.-S. O., Foster, D. A., Rapp, U. R., and Rosner, M. R. (1994). Differential raf requirement for activation of mitogen-activated protein kinase by growth factors, phorbol esters, and calcium. J Biol Chem 269, 7337-7341.

118. Neary, J. T., Norenberg, O. B., and Norenberg, M. D. (1988). Protein kinase C in primary astrocyte cultures: cytoplasmic localization and translocation by a phorbol ester. J Neurochem 50, 1179-1184.

119. Reifenberger, G., Deckert, M., and Wechsler, W. (1989). Immunohistochemical determination of protein kinase C expression and proliferative activity in human brain tumors. Acta Neuropathol 78, 166-175.

120. Benzil, D. L., Finkelstein, S. D., Epstein, M. H., and Finch, P. W. (1992). Expression pattern of a-protein kinase C in human astrocytomas indicates a role in malignant progression. Cancer Res 52, 2951-2956.

121. Couldwell, W. T., Uhm, J. H., Antel, J. P., and Yong, V. W. (1991). Enhanced protein kinase C activity correlates with the growth rate of malignant gliomas in vitro. Neurosurg 29, 880-887.

122. Couldwell, W. T., Antel, J. P., and Yong, V. W. (1992). Protein kinase C activity correlates with the growth rate of malignant gliomas: Part II. Effects of glioma mitogens and modulators of protein kinase C. Neurosurgery 31, 717-724.

123. Ahmad, S., Mineta, T., Martuza, R. L., and Glazer, R. I. (1994). Antisense expression of protein kinase C-alpha inhibits the growth and tumorigenicity of human glioblastoma cells. Neurosurgery 35, 904-909.

124. Pollack, I. F., Kawecki, S., and Lazo, J. S. (1996). 7-hydroxystaurosporine (UCN-01), a selective protein kinase C inhibitor, exhibits cytotoxicity against cultured glioma cells and potentiates the antiproliferative effects of BCNU and cisplatin. J Neurosurg 84, 1024-1032.

125. Yazaki, T., Ahmad, S., Chahlavi, A. et al. (1996). Treatment of glioblastoma U-87 by systemic administration of an antisense protein kinase C-aVphosphorothioate oligodeoxynucleotide. Molec Pharmacol 50, 236-242.

126. Bredel, M., Pollack, I. F., Freund, J. M., Rusnak, J., and Lazo, J. S. (1999a). Protein kinase C inhibition by UCN-01 induces apoptosis in human glioma cells in a time-dependent fashion. J Neuro-oncol 41, 9-20.

127. Olayioye, M. A., Beuvink, I., Horsch, K., Daly, J. M., and Hynes, N. E. (1999). ErbB receptor-induced activation of stat transcription factors in mediated by Src tyrosine kinases. J Biol Chem 274, 17209-17218.

128. Bienvenu, F., Gascan, H., and Coqueret, O. (2001). Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism. J Biol Chem 276, 16840-16847.

129. Schaefer, L. K., Ren, Z., Fuller, G. N., and Schaefer, T. S. (2002). Constitutive activation of Stat3aVin brain tumors: Localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21, 2058-2065.

130. Pollack, I. F., Bredel, M., Erff, M., and Sebti, S. M. (1999a). Inhibition of Ras and related G-proteins as a novel therapeutic strategy for blocking malignant glioma growth. II. In vivo results in a nude mouse model. Neurosurgery 45, 1208-1214.

131. Shamah, S. M., Stiles, C. D., and Guha, A. (1993). Dominantnegative mutants of platelet-derived growth factor revert the transformed phenotype of human astrocytoma cells. Molec Cell Biol 13, 7203-7212.

132. Huang, S. M., and Harari, P. M. (1999). Epidermal growth factor receptor inhibition in cancer therapy: biology, rationale and preliminary clinical results. Invest New Drugs 17, 259-269.

133. Overholser, J. P., Prewett, M. C., Hooper, A. T., Waksal, H. W., and Hicklin, D. J. (2000). Epidermal growth factor receptor blockade by antibody IMC-C225 inhibits growth of a human pancreatic carcinoma xenograft in nude mice. Cancer 89, 74-82.

134. Pegram, M. D., Lipton, A., Hayes, D. F. et al. (1998). Phase II study of receptor-enhanced chemosensitivity using recombinant humanized anti-p185HER2/neu monoclonal antibody plus cisplatin in patients with HER2/neu-overexpressing metastatic breast cancer refractory to chemotherapy treatment. J Clin Oncol 16, 2659-2671.

135. Baselga, J., Pfister, D., Cooper, M. R. et al. (2000). Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol 18, 904-914

136. Shin, D. M., Donato, N. J., Perez-Soler, R. et al. (2001). Epidermal growth factor receptor-targeted therapy with C225 and cisplatin in patients with head and neck cancer. Clin Cancer Res 7, 1204-1213.

137. Huang, S. M., Bock, J. M., and Harari, P. M. (1999). Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res 59, 1935-1940.

138. Laske, D. W., Ilercil, O., Akbasak, A., Youle, R. J., and Oldfield, E.H. (1994). Efficacy of direct intratumoral therapy with targeted protein toxins for solid human tumors in nude mice. J Neurosurg 80, 520-526.

139. Laske, D. W., Youle, R. J., and Oldfield, E. H. (1997). Tumor regression with regional distribution of targeted toxin TF-CRM107 in patients with malignant brain tumors. Nature Med 3, 1362-1368.

140. Druker, B. J., Tamura, S., Buchdunger, E. et al. (1996). Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2, 561-566.

141. Druker, B. J., Sawyers, C. L., Kantarjian, H. et al. (2001). Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344, 1038-1042.

142. Druker, B. J., Talpaz, M., Resta, D. J. et al. (2001b). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344, 1031-1037.

143. Sawyers, C. L., Hochhaus, A., Feldman, E. et al. (2002). Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results in a phase II study. Blood 99, 3530-3539.

144. O'Brien, S. G., Guilhot, F., Larson, R. A. et al. (2003). Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. New Engl J Med 348, 994-1004.

145. Hughes, T. P., Kaeda, J., Branford, S. et al. (2003). Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. New Engl J Med 349, 1423-1432.

146. Gorre, M. E., Mohammed, M., Ellwood, K. et al. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293, 876-880.

147. Branford, S., Rudzki, Z., Walsh, S. et al. (2003). Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood 102, 276-283.

148. Heinrich, M. C., Griffith, D. J., Druker, B. J., Wait, C. L., Ott, K. A., and Zigler, A. J. (2000). Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925-932.

149. Joensuu, H., Roberts, P. J., Sarlomo-Rikala, M. et al. (2001). Effect of the tyrosine kinase inhibitor STTI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344, 1052-1056.

150. Buchdunger, E., Cioffi, C. L., Law, N. et al. (2000). Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exper Ther 295, 139-145.

151. Uhrbom, L., Hesselager, G., Ostman, A., Nister, M., and Westermark, B. (2000). Dependence of autocrine growth factor stimulation in platelet-derived growth factor-B-induced mouse brain tumor cells. Int J Cancer 85, 398-406.

152. Kilic, T., Alberta, J. A., Zdunek, P. R. et al. (2000). Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer Res 60, 143-150.

153. Pietras, K., Ostman, A., Sjoquist, M. et al. (2001). Inhibition of platelet-derived growth factor receptors reduces interstitial hypertension and increases transcapillary transport in tumors. Cancer Res 61, 2929-2934.

154. Apperly, J. F., Gardembas, M., Melo, J. V. et al. (2002). Response to imatinib mesylate in patients with chronic myeloproliferative diseases with rearrangements of the platelet-derived growth factor receptor beta. New Engl J Med 347, 481-487.

155. Pietras, K., Rubin, K, Sjoblom, T. et al. (2002). Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy. Canc Res 62, 5476-5484.

156. Raymond, E., Brandes, A., Van Oosterom, A. et al. (2004). Multicentre phase II study of imatinib mesylate in patients with recurrent glioblastoma: An EORTC:NDDG/BTG inter-group study. Proc ASCO 107.

157. Katz, A., Barrios, C. H., Abramoff, R., Simon, S. D., Tabacof, J., and Gansl, R. C. (2004). Imatinib (STI 571) is active in patients with high-grade gliomas progressing on standard therapy. Proc ASCO 117.

158. Dresemann, G. (2004). Imatinib (STI571) plus hydroxyurea: Safety and efficacy in pretreated progressive glioblastoma multiforme patients. Proc ASCO 119.

159. Ciardiello, F., Caputo, R., Bianco, R. et al. (2001). Inhibition of growth factor production and angiogenesis in human cancer cells by ZD1839 (Iressa), a selective epidermal growth factor receptor tyrosine kinase inhibitor. Clin Cancer Res 7, 1459-1465.

160. Ciardello, F., Caputo, R., Bianco, R. et al. (2000). Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6, 2053-2063.

161. Baselga, J., and Averbuch, S. D. (2000). ZD1839 ('Iressa') as an anticancer agent. Drugs 60 (suppl 1), 33-40.

162. Wakeling, A. E., Guy, S. P., Woodburn, J. R. et al. (2002). ZD1839 (Iressa): An orally active inhibitor of epidermal growth factor signaling with potential for cancer therapy. Cancer Res 62, 5749-5754.

163. Swaisland, H., Laight, A., Stafford, L. et al. (2001). Pharmaco-kinetics and tolerability of the orally active selective epidermal growth factor receptor tyrosine kinase inhibitor ZD1839 in healthy volunteers. Clin Pharmacokinetics 40, 297-306.

164. Raymond, E., Faivre, S., and Armand, J. P. (2000). Epidermal growth factor receptor tyrosine kinase as a target for anticancer therapy. Drugs 60 Suppl 1, 15-23.

165. Lorusso, P.M. (2003). Phase I studies of ZD1839 in patients with common solid tumors. Sem Oncol 30 (Suppl 1), 21-29.

166. Albanell, J., Royo, F., Auerbach, S. et al. (2002). Pharmaco-kinetic studies of the epidermal growth factor receptor inhibitor ZD1839 in skin from cancer patients: histological and molecular consequences of receptor inhibition. J Clin Oncol 20, 110-124.

167. Baselga, J., Rischin, D., Ranson, M. et al. (2002). Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20, 4292-4302.

168. Fukuoka, M., Yano, S., Giaccone, G. et al. (2003). Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer. J Clin Oncol 21, 2237-2246.

169. Kris, M. G., Natale, R. B., Herbst, R. S. et al. (2003). Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. JAMA 290, 2149-2158.

170. Herbst, R. S., Giaccone, G., Schiller, J. H., Natale, R. B., Miller, V., Manegold, C., et al. (2004). Gefinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: a phase III trial—Intact 2. J Clin Oncol 22, 785-94.

171. Giaccone, G., Herbst, R. S., Manegold, C., Scagliotti, G., Rosell, R., Miller, V., et al. (2004). Gefinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: a phase III trial—Intact 1. J Clin Oncol 22, 777-84.

172. Dancey, J. E., and Freidlin, B. (2003). Targeting epidermal growth factor receptor - are we missing the mark. Lancet 362, 62-64.

173. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New Engl J Med 350, 2129-2139.

174. Heimberger, A. B., Learn, C. A., Archer, G. E., McLendon, R. E., and Chewning, T. A., Tuck F. L., et al. (2002). Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8, 3496-3502.

175. Li, B., Chang, C.-M., Yuan, M., McKenna, G., and Shu, H.-K. (2003). Resistance to small molecule inhibitors of epidermal growth factor receptor in malignant gliomas. Cancer Res 63, 7443-7450.

176. Bianco, R., Shin, I., Ritter, C. A. et al. (2003). Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22, 2812-2822.

177. Lieberman, F. S., Cloughesy, T., Fine, H., Kuhn, J., Lamborn, K., Malkin, M., et al. (2004). NABTC phase I/II trial of ZD-1839 for recurrent malignant gliomas and unresectable meningiomas. Proc ASCO 109.

178. Uhm, J. H., Ballman, K. V., Giannini, C. et al. (2004). Phase II study of ZD 1839 in patients with newly diagnosed grade 4 astrocytomas. Proc ASCO 108.

179. Prados, M., Yung, W., Wen, P. et al. (2004). Phase I study of ZD1839 plus temozolomide in patients with malignant glioma. Proc ASCO 108.

180. Moyer, J. D., Barbacci, EG., Iwata, K. K. et al. (1997). Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 57, 4838-4848.

181. Pollack, V. A., Savage, D., Baker, D. et al. (1999). Inhibition of epidermal growth factor receptor-associated tyrosine phos-phorylation in human carcinomas with CP-358,774. Dynamics of receptor inhibition in situ and antitumor effects in athymic mice. J Pharmacol Exp Ther 291, 739-748.

182. Malik, S. N., Siu, L. L., Rowinsky, E. K. et al. (2003). Pharmacodynamic evaluation of the epidermal growth factor receptor inhibitor OSI-774 in human epidermis of cancer patients. Clin Cancer Res 9, 2478-2486.

183. Hidalgo, M., Siu, L. L., Nemunaitis, J. et al. (2001). Phase I and pharmacologic study of OSI-774, an epidermal growth factor receptor tyrosine kinase inhibitor, in patients with advanced solid malignancies. J Clin Oncol 19, 3267-3279.

184. Rowinsky, E. K., Hammond, L., Siu, L. et al. (2001). Dose-schedule-finding, pharmacokinetic, biologic, and functional imaging studies of OSI-774, a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. Proc Am Soc Clin Oncol 20, 2a (abstract 5).

185. Perez-Soler, R., Chachoua, A., Huberman, M. et al. (2001). A phase II trial of the epidermal growth factor receptor tyrosine kinase inhibitor OSI-774, following platinum-based chemotherapy, in patients with advanced, EGFR-expressing non-small cell lung cancer. Proc Am Soc Clin Oncol 20, 310a, abstract 1235.

186. Finkler, N., Gordon, A., Crozier, M. et al. (2001). Phase 2 evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced ovarian cancer. Proc Am Soc Clin Oncol 20, 208a, abstract 831.

187. Senzer, N. N., Soulieres, D., Siu, L. et al. (2001). Phase 2 evaluation of OSI-774, a potent oral antagonist of the EGFR-TK in patients with advanced squamous cell carcinoma of the head and neck. Proc Am Soc Clin Oncol 20, 2a, abstract 6.

188. Perez-Soler, R. (2004). The role of erlotinib (Tarceva, OSI 774) in the treatment of non-small cell lung cancer. Clinical Cancer Research. 10, 4238s-4240s.

189. Prados, M., Chang, S., Burton, E. et al. (2003). Phase I study of OSI-774 alone or with temozolomide in patients with malignant glioma. Proc ASCO, Abstract 394.

190. Raizer, J. J., Abrey L.E., Wen, P., Cloughesy, T., Robins, I. A., Fine, H. A., et al. (2004). A phase II trial of erlotinib (OSI-774) in patients with recurrent malignant gliomas not on EIACDs. Proc ASCO 107.

191. Vogelbaum, M. A., Peereboom, D., Stevens, G., Barnett, G., and Brewer, C. (2004). Phase II trial of the EGFR tyrosine kinase inhibitor erlotinib for single agent therapy of recurrent glioblastoma multiforme: Interim results. Proc ASCO 121.

192. Yung, A., Vredenburgh, J., Cloughesy, T., Klencke, B. J., Mischel, P. S., Bigner, D. D., et al. (2004). Erlotinib HCL for glioblastoma multiforme in first relapse, a phase II trial. Proc ASCO 120.

193. Lydon, N. B., Mett, H., Mueller, M. et al. (1998). A potent protein-tyrosine kinase inhibitor which selectively blocks proliferation of epidermal growth factor receptor-expressing tumor cells in vitro and in vivo. Int J Cancer 76, 154-163.

194. Burris, H. A., III. (2004). Dual kinase inhibition in the treatment of breast cancer: Initial experience with the EGFR/ErbB-2 inhibitor lapitinib. The Oncologist 9 (suppl 3): 10-15.

195. Rusnak, D. W., Affleck, K., Cockerill, S. G. et al. (2001). The characterization of novel, dual ErbB-2/EGFR, tyrosine kinase inhibitors: potential therapy for cancer. Cancer Res 61, 7196-7203.

196. Erlichman, C., Boerner, S. A., Hallgren, C. G. et al. (2001). The HER tyrosine kinase inhibitor CI1033 enhances cytotoxi-city of 7-ethyl-10-hydroxy-camptothecin and topotecan by inhibiting breast cancer resistance protein-mediated drug efflux. Cancer Res 61, 739-748.

197. Garrison, M., Tolcher, A., and McCreery, H. (2001). A phase I and pharmacokinetic study of CI-1033, a pan-ErbB tyrosine kinase inhibitor, given orally on days 1, 8, 15, every 28 days to patients with solid tumors. Proc Am Soc Clin Oncol 20, 72a, abstract 283.

198. Shin, D., Nemunaitis, J., and Zinner, R. (2001). A phase I clinical and biomarker study of CI-1033, a novel pan-ErbB tyrosine kinase inhibitor in patients with solid tumors. Proc Am Soc Clin Oncol 20, 82a, abstract 324.

199. Greenberger, L. M., Discafani, C., Wang, Y-F. et al. (2000). EKB-569: a new irreversible inhibitor of EGFR tyrosine kinase for the treatment of cancer. Clin Cancer Res 6, 4544s.

200. Torrance, C. J., Jackson, P. E., Montgomery, E. et al. Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6, 1024-1028.

201. Tsai, J. C., Goldman, C. K., and Gillespie, G. Y. (1995). Vascular endothelial growth factor in human glioma cell lines: induced secretion by EGF, PDGF-BB, and bFGF. J Neurosurg 82, 864-873.

202. Maity, A., Pore, N., Lee, J., Solomon, D., and O'Rourke, D. M. (2000). Epidermal growth factor transcriptionally up-regulated vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphatidylinositol 3'-kinase and distinct from that induced by hypoxia. Cancer Res 60, 5879-5886.

203. Clark, K., Smith, K., Gullick, W. J., and Harris, A. J. (2001). Mutant epidermal growth factor receptor enhances induction of vascular endothelial growth factor by hypoxia and insulinlike growth factor-1 by a PI3 kinase dependent pathway. Br J Cancer 84, 1322-1329.

204. Viloria-Petit, A., Crombet, T., Jothy, S. et al. (2001). Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61, 5090-5101.

205. Huang, S.-M., Li, E., Armstrong, E. A., and Harari, P. M. (2002). Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62, 4300-4306.

206. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., and Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242-248.

207. Jensen, R.L. (1998). Growth factor-mediated angiogenesis in the malignant progression of glial tumors: a review. Surg Neurol 49, 189-195.

208. Hirata, A., Ogawa, S.-I., Kometani, T. et al. (2002). ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase. Cancer Res 62, 2554-2560.

209. Kondapaka, S. B., Fridman, R., and Reddy, K. B. Epidermal growth factor and amphiregulin up-regulate matrix metallo-proteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 17, 722-726.

210. Lal, A., Glazer, C. A., Martinson, H. M. et al. (2002). Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62, 3335-3339.

211. Ciardiello, F., Bianco, R., Damiano, V. et al. (1999). Antitumor activity of sequential treatment with topotecan and anti-epidermal growth factor receptor monoclonal antibody C225. Clin Cancer Res 5, 909-916.

212. Bruns, C. J., Harbison, M. T., Davis, D. W. et al. (2000). Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangio-genic mechanisms. Clin Cancer Res 6, 1936-1948.

213. Inoue, K., Slaton, J. W., Perrotte, P. et al. (2000). Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clin Cancer Res 6, 4874-4884.

214. Sirotnak, F.M. (2003). Studies with ZD1839 in preclinical models. Sem Oncol 30, Suppl 1: 12-20.

215. Bonner, J. A., Raisch, K. P., Trummell, H. Q. et al. (2000). Enhanced apoptosis with combination C225/radiation treatment serves as the impetus for clinical investigation in head and neck cancers. J Clin Oncol 18, 47S-53S.

216. Milas, L., Mason, K., and Hunter, N., (2000). In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Canc Res 6, 323-325.

217. Robert, F., Ezekiel, M. P., Spencer, S. A. et al. (2001). Phase I study of anti-epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol 19, 3234-3243.

218. O'Rourke, D. M., Kao, G. D., Singh, N. et al. (1998). Conversion of a radioresistant phenotype to a more sensitive one by disabling erbB receptor signaling in human cancer cells. Proc Natl Acad Sci USA 95, (18):10842-7.

219. Bianco, C., Tortora, G., Bianco, R. et al. (2002). Enhancement of antitumor activity of ionizing radiation by combined treatment with the selective epidermal growth factor receptor-tyrosine kinase inhibitor ZD1839 (Iressa). Clin Cancer Res 8, 3250-3258.

220. Gee, J. M., and Nicholson, R. I. (2003). Expanding the therapeutic repertoire of epidermal growth factor receptor blockade: Radiosensitization. Breast Cancer Res 5, 126-129.

221. Solomon, B., Hagekyriakou, J., Trivett, M. K., Stacker, S. A., McArthur, G. A., and Cullinane, C. (2003). EGFR blockade with ZD1839 (Iressa) potentiates the antitumor effects of single and multiple fractions of ionizing irradiation in human A431 squamous cell carcinoma. Int J Radiat Oncol Biol Phys 55, 713-723.

222. Thiesing, J. T., Ohno-Jones, S., Kolibaba, K. S., and Druker, B. J. (2000). Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells. Blood 96, 3195-3199.

223. Kano, Y., Akutsu, M., Tsunoda, S. et al. (2001). In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemia agents. Blood 97, 1999-2007.

224. Topaly, J., Zeller, W. J., and Fruehauf, S. (2001). Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on the BCR-ABL-positive chronic myelogenous leukemia cells. Leukemia 15, 342-347.

Plasma membrane

Nicotine Support Superstar

Nicotine Support Superstar

Stop Nicotine Addiction Is Not Easy, But You Can Do It. Discover How To Have The Best Chance Of Quitting Nicotine And Dramatically Improve Your Quality Of Your Life Today. Finally You Can Fully Equip Yourself With These Must know Blue Print To Stop Nicotine Addiction And Live An Exciting Life You Deserve!

Get My Free Ebook


Post a comment