References

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society, Series B, vol. 39:1-38. Dimatteo, I., Genovese, C.R., and Kass, R.E. (2001). Bayesian Curve-

Fitting with Free-Knot Splines. Biometrika vol. 88:1055-1071. Gilks, W.R., Richardson, S., and Spiegelhalter, D. (1996). In Markov Chain Monte Carlo in Practice. (W.R. Gilks, S. Richardson, and D. Spiegelhalter, eds.). Boca Raton: Chapman & Hill/CRC. Hutwagner, L.C., Maloney, E.K., Bean, N.H., Slutsker, L., and Martin, S.M. (1997). Using Laboratory-based Surveillance Data for Prevention: An Algorithm for Detecting Salmonella Outbreaks. Emerging Infectious Diseases vol. 3:395-400. McCullagh, P. and Nelder, J. A. (1983). Generalized Linear Models.

London: Chapman and Hall. Morton,A.P,et al. (2001).The Application of Statistical Process Control Charts to the Detection and Monitoring of Hospital-Acquired Infections. Journal of Quality Clinical Practice vol. 21:112-117. Page, E.S. (1954). Continuous Inspection Schemes. Biometrika vol. 41:100-115.

Robert, C.P. and Casella, G. (2004). Monte Carlo Statistical Methods.

New York: Springer. Rogerson, P.A. and Yamada, I. (2004). Approaches to Syndromic Surveillance When Data Consist of Small Regional Counts. Mortality and Morbidity Weekly Report vol. 53:79-85. Sonesson, C. and Bock, D. (2003). A Review and Discussion of Prospective Statistical Surveillance in Public Health. Journal of the Royal Statistical Society, Series A, vol. 166:5-21. Stirling, R., et al. (2001a). North Battleford, Spring 2001 Waterborne Cryptosporidium Outbreak. Health Canada Report, Ottawa, Ontario: Health Canada. Stirling, R., Aramini, J., Ellis, A., Lim, G., Meyers, R., Fleury, M. and Werker, D. (2001b). Waterborne Cryptosporidiosis Outbreak, North Battleford, Saskatchewan, Spring 2001. Canadian Communicable Disease Report vol. 27:185-192. Wallstrom, G.L.,Wagner, M.M., and Hogan, W.R. (2004). Using Surveillance Data from Actual Outbreaks to Characterize Detectability. RODS Laboratory Technical Report. Center for Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania.

Was this article helpful?

0 0

Post a comment