Besag, J., Newell, J. (1991). The detection of clusters in rare diseases.

J R Stat Soc A 154:143-55. Besag, J., York, J., Mollie, A. (1991). Bayesian image restoration with two applications in spatial statistics. Ann Inst Stat Math 43:1-59. Bonferroni, C. E. (1935). Il calcolo delle assicurazioni su gruppi di teste.

In: Studi in Onore del Professore Salvatore Ortu Carboni, 13-60. Buckeridge, D. L., Musen, M. A., Switzer, P., et al. (2003). An analytic framework for space-time aberrancy detection in public health surveillance data. In: Proceedings of American Medical Informatics Association Annual Symposium, 120-4. Clayton, D. G., Bernardinelli, L. (1992). Bayesian methods for mapping disease risk. In: Elliot, P., Cuzick, J., English, D., et al., eds. Geographical and Environmental Epidemiology: Methods for Small Area Studies, 205-20. Oxford: Oxford University Press. Clayton, D. G., Kaldor, J. (1987). Empirical Bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 43:671-81.

Cuzick, J., Edwards, R. (1990). Spatial clustering for inhomogeneous populations. J R Stat Soc B 52:73-104. Duczmal, L., Buckeridge, D. (2005). Using modified spatial scan statistics to improve detection of disease out breaks when exposure occurs in the workplace. MMWR Morb Mortal Wkly Rep 54(suppl): 187.

Elliott, P., Wakefield, J. C., Best, N. G., et al., eds. (2000). Spatial Epidemiology: Methods and Applications. Oxford: Oxford University Press.

Gangnon, R. E., Clayton, M. K. (2000). Bayesian detection and modeling of spatial disease clustering. Biometrics 56:922-35.

Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:711-32.

Heffernan, R., Mostashari, F., Das, D., et al. (2004). Syndromic surveillance in public health practice. Emerg Infect Dis 10:858-64.

Kleinman, K., Abrams, A., Kulldorff, M., et al. (2005). A model-adjusted space-time scan statistic with an application to syndromic surveillance. In: Epidemiology and Infection. 133:409-19.

Kleinman, K., Lazarus, R., Platt, R. (2004). A generalized linear mixed models approach for detecting incident clusters of disease in small areas, with an application to biological terrorism. Am J Epidemiol 159:217-24.

Knox, E. G. (1964). The detection of space-time interactions. Appl Stat 13:25-29.

Kulldorff, M. (1999). Spatial scan statistics: models, calculations, and applications. In: Glaz, J., Balakrishnan, N., eds. Scan Statistics and Applications, 303-22. Boston: Birkhauser.

Kulldorff, M. (2001). Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc 164:61-72.

Kulldorff, M.,Athas,W. F., Feurer, E. J., et al. (1998). Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377-80.

Kulldorff, M., Feuer, E. J., Miller, B.A., et al. (1997). Breast cancer clusters in the northeast United States: a geographic analysis. Am J Epidemiol 146:161-70.

Kulldorff, M., Heffernan, R., Hartman, J., et al. (2005). A space-time permutation scan statistic for the early detection of disease outbreaks. PLOS Med 2:216-24.

Kulldorff, M., Information Management Services Inc. (2002). SaTScan v. 3.1: Software for the spatial and space-time scan statistics.

Kulldorff, M., Nagarwalla, N. (1995). Spatial disease clusters: detection and inference. Stat Med 14:799-810.

Lawson, A. B. (1993). On the analysis of mortality events around a prespecified fixed point. J R Stat Soc A 156:363-77.

Lawson, A. B. (1995). Markov Chain Monte Carlo techniques for putative pollution source problems in environmental epidemiology. Stats Med 14:2473-86.

Lawson, A. B. (2001). Statistical Methods in Spatial Epidemiology. Chichester: John Wiley & Sons.

Lawson, A. B., Clark, A. (1999). Markov chain Monte Carlo methods for putative sources of hazard and general clustering. In: Lawson, A.B., ed. Disease Mapping and Risk Assessment for Public Health, Chichester: John Wiley & Sons.

Lawson, A. B., Denison, D. G. T., eds. (2002). Spatial Cluster Modelling. Boca Raton, FL: Chapman & Hall/CRC.

Lombardo, J., Burkom, H., Elbert, E. (2003). A systems overview of the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II). J Urb Health 80(Suppl 1):i32-42.

Mantel, N. (1967). The detection of cancer clustering and the generalized regression approach. Cancer Res 27:209-20.

Naus, J. I. (1965). The distribution of the size of the maximum cluster of points on the line. J Am Stat Assoc 60:532-8.

Neill, D. B., Cooper, G. F., Moore, A. W. (2005c). A Bayesian scan statistic for spatial cluster detection. In Advances in Disease Surveillance, in press.

Neill, D. B., Moore, A. W. (2004a). A fast multi-resolution method for detection of significant spatial disease clusters. Adv Neural Information Processing Syst 16:651-8.

Neill, D. B., Moore, A. W. (2004b). Rapid detection of significant spatial clusters. In proc. 10th ACM SI6KOO Conference on Knowledge Discovery and Data Mining, 256-65.

Neill, D. B., Moore, A. W., Pereira, F., et al. (2005a). Detecting significant multidimensional spatial clusters. Adv Neural Information Processing Syst 17:969-976.

Neill, D. B., Moore, A. W., Sabhnani, M., et al. (2005b). Detection of emerging space-time clusters. In proc. 11th ACM SI6KOO Conference on Knowledge Discovery and Data Mining, 218-227.

Openshaw, S., Charlton, M., Craft, A., et al. (1988). Investigation of leukemia clusters by use of a geographical analysis machine. Lancet 1:272-3.

Snow, J. (1855). On the Mode of Communication of Cholera. London: John Churchill.

Stone, R. A. (1988). Investigations of excess environmental risks around putative sources: statistical problems and a proposed test. Stats Med 7:649-660.

Tango,T. (1995). A class of tests for detecting "general" and "focused" clustering of rare diseases. Stats Med 14:2323-34.

Turnbull, B. W., Iwano, E. J., Burnett, W. S., et al. (1990). Monitoring for clusters of disease: application to leukemia incidence in upstate New York. Am J Epidemiol 132:s136-43.

Wagner, M., Robinson, J.,Tsui, F., et al. (2003). Design of a national retail data monitor for public health surveillance. J Am Med Inform Assoc 10:409-18.

Whittemore,A., Friend, N., Brown, B., et al. (1987). A test to detect clusters of disease. Biometrika 74:631-5.

Yih, W. K., Caldwell, B., Harmon, R. (2004).The National

Bioterrorism Syndromic Surveillance Demonstration Program. MMWR Morb Mortal Wkly Rep 53(Suppl):43-6.

Was this article helpful?

0 0
10 Ways To Fight Off Cancer

10 Ways To Fight Off Cancer

Learning About 10 Ways Fight Off Cancer Can Have Amazing Benefits For Your Life The Best Tips On How To Keep This Killer At Bay Discovering that you or a loved one has cancer can be utterly terrifying. All the same, once you comprehend the causes of cancer and learn how to reverse those causes, you or your loved one may have more than a fighting chance of beating out cancer.

Get My Free Ebook

Post a comment